Compare commits

...

35 Commits

Author SHA1 Message Date
a4d4bc22fc Add --skip option to nilm-insert 2013-07-30 18:25:47 -04:00
6090dd6112 prep: only process intervals present in both raw & sinefit 2013-07-30 14:55:06 -04:00
Sharon NILM
9c0d9ad324 Sample scripts from Sharon 2013-07-29 18:37:55 -04:00
Sharon NILM
8b9c5d4898 Fix daemon dependency 2013-07-29 17:40:51 -04:00
cf2c28b0fb Add --daemon flag 2013-07-29 17:16:18 -04:00
87a26c907b Watch for process termination too 2013-07-29 15:08:49 -04:00
def465b57c Improve pipewatch; add nilm-pipewatch script 2013-07-29 14:58:15 -04:00
0589b8d316 start of pipewatch util 2013-07-29 14:10:56 -04:00
9c5f07106d Don't need python-pip 2013-07-20 16:15:29 -04:00
62e11a11c0 Fix issue with column ordering in the exemplars
If the max scale in the exemplar was a column we weren't using, it
would bail out when looking for that correlation later.  Change things
around so exemplars in RAM only keep around the columns we care about.
2013-07-18 22:51:27 -04:00
2bdcee2c36 More helpful error if exemplar stream doesn't exist 2013-07-15 15:19:52 -04:00
6dce8c5296 More output 2013-07-11 18:56:53 -04:00
25c35a56f6 Trainola inserts into the destination stream now 2013-07-10 12:59:39 -04:00
d610deaef0 More trainola work 2013-07-10 11:38:32 -04:00
d7d5ccc9a7 More filter cleanup 2013-07-09 19:27:20 -04:00
f28753ff5c Move process_numpy_interval outside the class 2013-07-09 18:40:49 -04:00
c9c2e0d5a8 Improve split between process_numpy and process_numpy_interval 2013-07-09 18:09:05 -04:00
5a2a32bec5 WIP on trainola improvements 2013-07-09 17:56:26 -04:00
706c3933f9 Add trainola from nilmrun 2013-07-09 17:55:57 -04:00
cfd1719152 Use nilmdb.utils.interval.optimize; bump nilmdb min version 2013-07-09 17:53:04 -04:00
c62fb45980 Makefile cleanup; add nilm-trainola binary 2013-07-09 16:53:47 -04:00
57d856f2fa Split filter.py internals up a little more
This makes it easier to use the filter stuff from other code, but it's
also turning it into more of a spaghetti nightmare.  Might not be
worth continuing down this path.
2013-07-09 16:52:00 -04:00
5d83d93019 Rename src/ directory to nilmtools/ 2013-07-08 11:54:13 -04:00
5f847a0513 Split process_numpy innards process_numpy_interval 2013-07-03 12:07:22 -04:00
29cd7eb6c7 Improve test_prep target in Makefile 2013-07-03 12:06:50 -04:00
62c8af41ea Cleanup comments 2013-06-06 15:34:23 -04:00
4f6bc48619 sinefit: include timestamps on marking output too 2013-05-11 11:00:31 -04:00
cf9eb0ed48 Improve sinefit resiliancy 2013-05-10 14:19:55 -04:00
32066fc260 Remove hard matplotlib dependency 2013-05-09 13:17:36 -04:00
739da3f973 Add median filter 2013-05-08 23:36:50 -04:00
83ad18ebf6 Fix non-string arguments to metadata_check 2013-05-08 12:49:38 -04:00
c76d527f95 Fix unicode handling in filter metadata match 2013-05-07 12:40:53 -04:00
b8a73278e7 Always store metadata rotation as a string 2013-04-29 14:25:11 -04:00
ce0691d6c4 sineefit: Change sfit4 to fit to \sin instead of \cos
And adjust the period locator accordingly.
Fitting \sin is the same mathematically, it's just conceptually more
straightforward since we're locating zero crossings anyway.
2013-04-27 18:12:20 -04:00
4da658e960 sinefit: move initial estimate into the main iteration loop
Just a little less code.  Same results.
2013-04-27 17:50:23 -04:00
23 changed files with 894 additions and 144 deletions

View File

@@ -8,22 +8,37 @@ else
@echo "Try 'make install'"
endif
test: test_cleanup
test: test_insert
test_pipewatch:
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
test_trainola:
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
test_cleanup:
src/cleanup.py -e extras/cleanup.cfg
src/cleanup.py extras/cleanup.cfg
nilmtools/cleanup.py -e extras/cleanup.cfg
nilmtools/cleanup.py extras/cleanup.cfg
test_insert:
@make install >/dev/null
src/insert.py --file --dry-run /test/foo </dev/null
nilmtools/insert.py --skip --file --dry-run /foo/bar ~/data/20130311T2100.prep1.gz ~/data/20130311T2100.prep1.gz ~/data/20130311T2200.prep1.gz
test_copy:
@make install >/dev/null
src/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
test_prep:
@make install >/dev/null
/tmp/raw.dat:
octave --eval 'fs = 8000;' \
--eval 't = (0:fs*10)*2*pi*60/fs;' \
--eval 'raw = transpose([sin(t); 0.3*sin(3*t)+sin(t)]);' \
--eval 'save("-ascii","/tmp/raw.dat","raw");'
test_prep: /tmp/raw.dat
-nilmtool destroy -R /test/raw
-nilmtool destroy -R /test/sinefit
-nilmtool destroy -R /test/prep
@@ -31,8 +46,9 @@ test_prep:
nilmtool create /test/sinefit float32_3
nilmtool create /test/prep float32_8
nilmtool insert -s '@0' -t -r 8000 /test/raw /tmp/raw.dat
src/sinefit.py -c 1 /test/raw /test/sinefit
src/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtools/sinefit.py -a 0.5 -c 1 -s '@0' -e '@5000000' /test/raw /test/sinefit
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtool extract -s min -e max /test/prep | head -20
test_decimate:
@@ -40,8 +56,8 @@ test_decimate:
-@nilmtool destroy /lees-compressor/no-leak/raw/16 || true
-@nilmtool create /lees-compressor/no-leak/raw/4 float32_18 || true
-@nilmtool create /lees-compressor/no-leak/raw/16 float32_18 || true
time python src/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/1 /lees-compressor/no-leak/raw/4
python src/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/4 /lees-compressor/no-leak/raw/16
time python nilmtools/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/1 /lees-compressor/no-leak/raw/4
python nilmtools/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/4 /lees-compressor/no-leak/raw/16
version:
python setup.py version
@@ -63,4 +79,4 @@ clean::
gitclean::
git clean -dXf
.PHONY: all version dist sdist install clean gitclean
.PHONY: all version dist sdist install clean gitclean test

View File

@@ -6,9 +6,9 @@ Prerequisites:
# Runtime and build environments
sudo apt-get install python2.7 python2.7-dev python-setuptools
sudo apt-get install python-numpy python-scipy python-matplotlib
sudo apt-get install python-numpy python-scipy python-daemon
nilmdb (1.5.0+)
nilmdb (1.8.5+)
Install:

View File

@@ -0,0 +1,10 @@
#!/bin/bash
# Start the ethstream capture using nilm-pipewatch
# Bail out on errors
set -e
nilm-pipewatch --daemon --lock "/tmp/nilmdb-capture.lock" --timeout 30 \
"ethstream -a 192.168.1.209 -n 9 -r 8000 -N" \
"nilm-insert -m 10 -r 8000 --live /sharon/raw"

View File

@@ -0,0 +1,8 @@
[/sharon/prep-*]
keep = 1y
[/sharon/raw]
keep = 2w
[/sharon/sinefit]
keep = 1y

View File

@@ -0,0 +1,9 @@
# Install this by running "crontab crontab" (will replace existing crontab)
# m h dom mon dow cmd
# Run NilmDB processing every 5 minutes
*/5 * * * * chronic /home/nilm/data/process.sh
# Check the capture process every minute
*/1 * * * * chronic /home/nilm/data/capture.sh

View File

@@ -0,0 +1,28 @@
#!/bin/bash
# Run all necessary processing on NilmDB data.
# Bail out on errors
set -e
# Ensure only one copy of this code runs at a time:
LOCKFILE="/tmp/nilmdb-process.lock"
exec 99>"$LOCKFILE"
if ! flock -n -x 99 ; then
echo "NilmDB processing already running, giving up..."
exit 0
fi
trap 'rm -f "$LOCKFILE"' 0
# sinefit on phase A voltage
nilm-sinefit -c 5 /sharon/raw /sharon/sinefit
# prep on A, B, C with appropriate rotations
nilm-prep -c 1 -r 0 /sharon/raw /sharon/sinefit /sharon/prep-a
nilm-prep -c 2 -r 120 /sharon/raw /sharon/sinefit /sharon/prep-b
nilm-prep -c 3 -r 240 /sharon/raw /sharon/sinefit /sharon/prep-c
# decimate raw and prep data
nilm-decimate-auto /sharon/raw /sharon/prep*
# run cleanup
nilm-cleanup --yes /home/nilm/data/cleanup.cfg

View File

@@ -0,0 +1,29 @@
{ "columns" : [ { "index" : 0, "name" : "P1" },
{ "index" : 1, "name" : "Q1" },
{ "index" : 2, "name" : "P3" } ],
"stream" : "/sharon/prep-a",
"url" : "http://bucket.mit.edu/nilmdb",
"dest_stream" : "/sharon/prep-a-matches",
"start" : 1365153062643133.5,
"end" : 1365168814443575.5,
"exemplars" : [ { "columns" : [ { "index" : 0,
"name" : "P1"
} ],
"dest_column" : 0,
"end" : 1365073657682000,
"name" : "Turn ON",
"start" : 1365073654321000,
"stream" : "/sharon/prep-a",
"url" : "http://bucket.mit.edu/nilmdb"
},
{ "columns" : [ { "index" : 2, "name" : "P3" },
{ "index" : 0, "name" : "P1" } ],
"dest_column" : 1,
"end" : 1365176528818000,
"name" : "Type 2 turn ON",
"start" : 1365176520030000,
"stream" : "/sharon/prep-a",
"url" : "http://bucket.mit.edu/nilmdb"
}
]
}

View File

@@ -0,0 +1,31 @@
{ "url": "http://bucket.mit.edu/nilmdb",
"dest_stream": "/sharon/prep-a-matches",
"stream": "/sharon/prep-a",
"start": 1366111383280463,
"end": 1366126163457797,
"columns": [ { "name": "P1", "index": 0 },
{ "name": "Q1", "index": 1 },
{ "name": "P3", "index": 2 } ],
"exemplars": [
{ "name": "Boiler Pump ON",
"url": "http://bucket.mit.edu/nilmdb",
"stream": "/sharon/prep-a",
"start": 1366260494269078,
"end": 1366260608185031,
"dest_column": 0,
"columns": [ { "name": "P1", "index": 0 },
{ "name": "Q1", "index": 1 }
]
},
{ "name": "Boiler Pump OFF",
"url": "http://bucket.mit.edu/nilmdb",
"stream": "/sharon/prep-a",
"start": 1366260864215764,
"end": 1366260870882998,
"dest_column": 1,
"columns": [ { "name": "P1", "index": 0 },
{ "name": "Q1", "index": 1 }
]
}
]
}

View File

@@ -181,7 +181,7 @@ def versions_from_parentdir(parentdir_prefix, versionfile_source, verbose=False)
tag_prefix = "nilmtools-"
parentdir_prefix = "nilmtools-"
versionfile_source = "src/_version.py"
versionfile_source = "nilmtools/_version.py"
def get_versions(default={"version": "unknown", "full": ""}, verbose=False):
variables = { "refnames": git_refnames, "full": git_full }

View File

@@ -19,6 +19,10 @@ import re
import argparse
import numpy as np
import cStringIO
import functools
class ArgumentError(Exception):
pass
class MissingDestination(Exception):
def __init__(self, args, src, dest):
@@ -65,6 +69,70 @@ def get_stream_info(client, path):
return None
return StreamInfo(client.geturl(), streams[0])
# Filter processing for a single interval of data.
def process_numpy_interval(interval, extractor, inserter, warn_rows,
function, args = None):
"""For the given 'interval' of data, extract data, process it
through 'function', and insert the result.
'extractor' should be a function like NumpyClient.stream_extract_numpy
but with the the interval 'start' and 'end' as the only parameters,
e.g.:
extractor = functools.partial(NumpyClient.stream_extract_numpy,
src_path, layout = l, maxrows = m)
'inserter' should be a function like NumpyClient.stream_insert_context
but with the interval 'start' and 'end' as the only parameters, e.g.:
inserter = functools.partial(NumpyClient.stream_insert_context,
dest_path)
If 'warn_rows' is not None, print a warning to stdout when the
number of unprocessed rows exceeds this amount.
See process_numpy for details on 'function' and 'args'.
"""
if args is None:
args = []
with inserter(interval.start, interval.end) as insert_ctx:
insert_func = insert_ctx.insert
old_array = np.array([])
for new_array in extractor(interval.start, interval.end):
# If we still had old data left, combine it
if old_array.shape[0] != 0:
array = np.vstack((old_array, new_array))
else:
array = new_array
# Pass the data to the user provided function
processed = function(array, interval, args, insert_func, False)
# Send any pending data that the user function inserted
insert_ctx.send()
# Save the unprocessed parts
if processed >= 0:
old_array = array[processed:]
else:
raise Exception(
sprintf("%s return value %s must be >= 0",
str(function), str(processed)))
# Warn if there's too much data remaining
if warn_rows is not None and old_array.shape[0] > warn_rows:
printf("warning: %d unprocessed rows in buffer\n",
old_array.shape[0])
# Last call for this contiguous interval
if old_array.shape[0] != 0:
processed = function(old_array, interval, args,
insert_func, True)
if processed != old_array.shape[0]:
# Truncate the interval we're inserting at the first
# unprocessed data point. This ensures that
# we'll not miss any data when we run again later.
insert_ctx.update_end(old_array[processed][0])
class Filter(object):
def __init__(self, parser_description = None):
@@ -134,63 +202,52 @@ class Filter(object):
self._parser = parser
return parser
def interval_string(self, interval):
return sprintf("[ %s -> %s ]",
timestamp_to_human(interval.start),
timestamp_to_human(interval.end))
def parse_args(self, argv = None):
args = self._parser.parse_args(argv)
if args.dest_url is None:
args.dest_url = args.url
if args.url != args.dest_url:
def set_args(self, url, dest_url, srcpath, destpath, start, end,
parsed_args = None, quiet = True):
"""Set arguments directly from parameters"""
if dest_url is None:
dest_url = url
if url != dest_url:
self.interhost = True
self._client_src = Client(args.url)
self._client_dest = Client(args.dest_url)
self._client_src = Client(url)
self._client_dest = Client(dest_url)
if (not self.interhost) and (args.srcpath == args.destpath):
self._parser.error("source and destination path must be different")
if (not self.interhost) and (srcpath == destpath):
raise ArgumentError("source and destination path must be different")
# Open and print info about the streams
self.src = get_stream_info(self._client_src, args.srcpath)
# Open the streams
self.src = get_stream_info(self._client_src, srcpath)
if not self.src:
self._parser.error("source path " + args.srcpath + " not found")
raise ArgumentError("source path " + srcpath + " not found")
self.dest = get_stream_info(self._client_dest, args.destpath)
self.dest = get_stream_info(self._client_dest, destpath)
if not self.dest:
raise MissingDestination(args, self.src,
StreamInfo(args.dest_url, [args.destpath]))
raise MissingDestination(parsed_args, self.src,
StreamInfo(dest_url, [destpath]))
print "Source:", self.src.string(self.interhost)
print " Dest:", self.dest.string(self.interhost)
self.start = start
self.end = end
if args.dry_run:
for interval in self.intervals():
print self.interval_string(interval)
raise SystemExit(0)
# Print info
if not quiet:
print "Source:", self.src.string(self.interhost)
print " Dest:", self.dest.string(self.interhost)
def parse_args(self, argv = None):
"""Parse arguments from a command line"""
args = self._parser.parse_args(argv)
self.set_args(args.url, args.dest_url, args.srcpath, args.destpath,
args.start, args.end, quiet = False, parsed_args = args)
self.force_metadata = args.force_metadata
self.start = args.start
self.end = args.end
if args.dry_run:
for interval in self.intervals():
print interval.human_string()
raise SystemExit(0)
return args
def _optimize_int(self, it):
"""Join and yield adjacent intervals from the iterator 'it'"""
saved_int = None
for interval in it:
if saved_int is not None:
if saved_int.end == interval.start:
interval.start = saved_int.start
else:
yield saved_int
saved_int = interval
if saved_int is not None:
yield saved_int
def intervals(self):
"""Generate all the intervals that this filter should process"""
self._using_client = True
@@ -217,12 +274,13 @@ class Filter(object):
self.src.path, diffpath = self.dest.path,
start = self.start, end = self.end) )
# Optimize intervals: join intervals that are adjacent
for interval in self._optimize_int(intervals):
for interval in nilmdb.utils.interval.optimize(intervals):
yield interval
self._using_client = False
# Misc helpers
def arg_time(self, toparse):
@staticmethod
def arg_time(toparse):
"""Parse a time string argument"""
try:
return nilmdb.utils.time.parse_time(toparse)
@@ -236,8 +294,14 @@ class Filter(object):
metadata = self._client_dest.stream_get_metadata(self.dest.path)
if not self.force_metadata:
for key in data:
wanted = str(data[key])
wanted = data[key]
if not isinstance(wanted, basestring):
wanted = str(wanted)
val = metadata.get(key, wanted)
# Force UTF-8 encoding for comparison and display
wanted = wanted.encode('utf-8')
val = val.encode('utf-8')
key = key.encode('utf-8')
if val != wanted and self.dest.rows > 0:
m = "Metadata in destination stream:\n"
m += " %s = %s\n" % (key, val)
@@ -252,14 +316,21 @@ class Filter(object):
self._client_dest.stream_update_metadata(self.dest.path, data)
# The main filter processing method.
def process_numpy(self, function, args = None, rows = 100000):
"""For all intervals that exist in self.src but don't exist in
self.dest, call 'function' with a Numpy array corresponding to
the data. The data is converted to a Numpy array in chunks of
'rows' rows at a time.
def process_numpy(self, function, args = None, rows = 100000,
intervals = None):
"""Calls process_numpy_interval for each interval that currently
exists in self.src, but doesn't exist in self.dest. It will
process the data in chunks as follows:
For each chunk of data, call 'function' with a Numpy array
corresponding to the data. The data is converted to a Numpy
array in chunks of 'rows' rows at a time.
If 'intervals' is not None, process those intervals instead of
the default list.
'function' should be defined as:
def function(data, interval, args, insert_func, final)
# def function(data, interval, args, insert_func, final)
'data': array of data to process -- may be empty
@@ -283,56 +354,18 @@ class Filter(object):
being inserted will be ended at the timestamp of the first
unprocessed data point.
"""
if args is None:
args = []
extractor = NumpyClient(self.src.url).stream_extract_numpy
inserter = NumpyClient(self.dest.url).stream_insert_numpy_context
for interval in self.intervals():
print "Processing", self.interval_string(interval)
with inserter(self.dest.path,
interval.start, interval.end) as insert_ctx:
insert_function = insert_ctx.insert
old_array = np.array([])
for new_array in extractor(self.src.path,
interval.start, interval.end,
extractor_func = functools.partial(extractor, self.src.path,
layout = self.src.layout,
maxrows = rows):
# If we still had old data left, combine it
if old_array.shape[0] != 0:
array = np.vstack((old_array, new_array))
else:
array = new_array
maxrows = rows)
inserter_func = functools.partial(inserter, self.dest.path)
# Pass it to the process function
processed = function(array, interval, args,
insert_function, False)
# Send any pending data
insert_ctx.send()
# Save the unprocessed parts
if processed >= 0:
old_array = array[processed:]
else:
raise Exception(
sprintf("%s return value %s must be >= 0",
str(function), str(processed)))
# Warn if there's too much data remaining
if old_array.shape[0] > 3 * rows:
printf("warning: %d unprocessed rows in buffer\n",
old_array.shape[0])
# Last call for this contiguous interval
if old_array.shape[0] != 0:
processed = function(old_array, interval, args,
insert_function, True)
if processed != old_array.shape[0]:
# Truncate the interval we're inserting at the first
# unprocessed data point. This ensures that
# we'll not miss any data when we run again later.
insert_ctx.update_end(old_array[processed][0])
for interval in (intervals or self.intervals()):
print "Processing", interval.human_string()
process_numpy_interval(interval, extractor_func, inserter_func,
rows * 3, function, args)
def main(argv = None):
# This is just a dummy function; actual filters can use the other
@@ -341,7 +374,7 @@ def main(argv = None):
parser = f.setup_parser()
args = f.parse_args(argv)
for i in f.intervals():
print "Generic filter: need to handle", f.interval_string(i)
print "Generic filter: need to handle", i.human_string()
if __name__ == "__main__":
main()

View File

@@ -53,7 +53,8 @@ def parse_args(argv = None):
is stepped forward to match 'clock'.
- If 'data' is running ahead, there is overlap in the data, and an
error is raised.
error is raised. If '--ignore' is specified, the current file
is skipped instead of raising an error.
"""))
parser.add_argument("-u", "--url", action="store",
default="http://localhost/nilmdb/",
@@ -61,6 +62,8 @@ def parse_args(argv = None):
group = parser.add_argument_group("Misc options")
group.add_argument("-D", "--dry-run", action="store_true",
help="Parse files, but don't insert any data")
group.add_argument("-s", "--skip", action="store_true",
help="Skip files if the data would overlap")
group.add_argument("-m", "--max-gap", action="store", default=10.0,
metavar="SEC", type=float,
help="Max discrepency between clock and data "
@@ -235,6 +238,10 @@ def main(argv = None):
"is %s but clock time is only %s",
timestamp_to_human(data_ts),
timestamp_to_human(clock_ts))
if args.skip:
printf("%s\n", err)
printf("Skipping the remainder of this file\n")
break
raise ParseError(filename, err)
if (data_ts + max_gap) < clock_ts:

43
nilmtools/median.py Executable file
View File

@@ -0,0 +1,43 @@
#!/usr/bin/python
import nilmtools.filter, scipy.signal
def main(argv = None):
f = nilmtools.filter.Filter()
parser = f.setup_parser("Median Filter")
group = parser.add_argument_group("Median filter options")
group.add_argument("-z", "--size", action="store", type=int, default=25,
help = "median filter size (default %(default)s)")
group.add_argument("-d", "--difference", action="store_true",
help = "store difference rather than filtered values")
try:
args = f.parse_args(argv)
except nilmtools.filter.MissingDestination as e:
print "Source is %s (%s)" % (e.src.path, e.src.layout)
print "Destination %s doesn't exist" % (e.dest.path)
print "You could make it with a command like:"
print " nilmtool -u %s create %s %s" % (e.dest.url,
e.dest.path, e.src.layout)
raise SystemExit(1)
meta = f.client_src.stream_get_metadata(f.src.path)
f.check_dest_metadata({ "median_filter_source": f.src.path,
"median_filter_size": args.size,
"median_filter_difference": repr(args.difference) })
f.process_numpy(median_filter, args = (args.size, args.difference))
def median_filter(data, interval, args, insert, final):
(size, diff) = args
(rows, cols) = data.shape
for i in range(cols - 1):
filtered = scipy.signal.medfilt(data[:, i+1], size)
if diff:
data[:, i+1] -= filtered
else:
data[:, i+1] = filtered
insert(data)
return rows
if __name__ == "__main__":
main()

168
nilmtools/pipewatch.py Executable file
View File

@@ -0,0 +1,168 @@
#!/usr/bin/python
import nilmdb.client
from nilmdb.utils.printf import *
import nilmdb.utils.lock
import nilmtools
import time
import sys
import os
import argparse
import subprocess
import tempfile
import threading
import select
import signal
import Queue
import daemon
def parse_args(argv = None):
parser = argparse.ArgumentParser(
formatter_class = argparse.ArgumentDefaultsHelpFormatter,
version = nilmtools.__version__,
description = """\
Pipe data from 'generator' to 'consumer'. This is intended to be
executed frequently from cron, and will exit if another copy is
already running. If 'generator' or 'consumer' returns an error,
or if 'generator' stops sending data for a while, it will exit.
Intended for use with ethstream (generator) and nilm-insert
(consumer). Commands are executed through the shell.
""")
parser.add_argument("-d", "--daemon", action="store_true",
help="Run in background")
parser.add_argument("-l", "--lock", metavar="FILENAME", action="store",
default=tempfile.gettempdir() +
"/nilm-pipewatch.lock",
help="Lock file for detecting running instance")
parser.add_argument("-t", "--timeout", metavar="SECONDS", action="store",
type=float, default=30,
help="Restart if no output from " +
"generator for this long")
group = parser.add_argument_group("commands to execute")
group.add_argument("generator", action="store",
help="Data generator (e.g. \"ethstream -r 8000\")")
group.add_argument("consumer", action="store",
help="Data consumer (e.g. \"nilm-insert /foo/bar\")")
args = parser.parse_args(argv)
return args
def reader_thread(queue, fd):
# Read from a file descriptor, write to queue.
try:
while True:
(r, w, x) = select.select([fd], [], [fd], 0.25)
if x:
raise Exception # generator died?
if not r:
# short timeout -- just try again. This is to catch the
# fd being closed elsewhere, which is only detected
# when select restarts.
continue
data = os.read(fd, 65536)
if data == "": # generator EOF
raise Exception
queue.put(data)
except Exception:
queue.put(None)
def watcher_thread(queue, procs):
# Put None in the queue if either process dies
while True:
for p in procs:
if p.poll() is not None:
queue.put(None)
return
time.sleep(0.25)
def pipewatch(args):
# Run the processes, etc
with open(os.devnull, "r") as devnull:
generator = subprocess.Popen(args.generator, shell = True,
bufsize = -1, close_fds = True,
stdin = devnull,
stdout = subprocess.PIPE,
stderr = None)
consumer = subprocess.Popen(args.consumer, shell = True,
bufsize = -11, close_fds = True,
stdin = subprocess.PIPE,
stdout = None, stderr = None)
queue = Queue.Queue(maxsize = 32)
reader = threading.Thread(target = reader_thread,
args = (queue, generator.stdout.fileno()))
reader.start()
watcher = threading.Thread(target = watcher_thread,
args = (queue, [generator, consumer]))
watcher.start()
try:
while True:
try:
data = queue.get(True, args.timeout)
if data is None:
break
consumer.stdin.write(data)
except Queue.Empty:
# Timeout: kill the generator
fprintf(sys.stderr, "pipewatch: timeout\n")
generator.terminate()
break
generator.stdout.close()
consumer.stdin.close()
except IOError:
fprintf(sys.stderr, "pipewatch: I/O error\n")
def kill(proc):
# Wait for a process to end, or kill it
def poll_timeout(proc, timeout):
for x in range(1+int(timeout / 0.1)):
if proc.poll() is not None:
break
time.sleep(0.1)
return proc.poll()
try:
if poll_timeout(proc, 0.5) is None:
proc.terminate()
if poll_timeout(proc, 0.5) is None:
proc.kill()
except OSError:
pass
return poll_timeout(proc, 0.5)
# Wait for them to die, or kill them
gret = kill(generator)
cret = kill(consumer)
fprintf(sys.stderr, "pipewatch: generator returned %d, " +
"consumer returned %d\n", gret, cret)
if gret == 0 and cret == 0:
sys.exit(0)
sys.exit(1)
def main(argv = None):
args = parse_args(argv)
lockfile = open(args.lock, "w")
if not nilmdb.utils.lock.exclusive_lock(lockfile):
printf("pipewatch process already running (according to %s)\n",
args.lock)
sys.exit(0)
try:
# Run as a daemon if requested, otherwise run directly.
if args.daemon:
with daemon.DaemonContext(files_preserve = [ lockfile ]):
pipewatch(args)
else:
pipewatch(args)
finally:
# Clean up lockfile
try:
os.unlink(args.lock)
except OSError:
pass
if __name__ == "__main__":
main()

View File

@@ -12,6 +12,7 @@ import scipy.fftpack
import scipy.signal
#from matplotlib import pyplot as p
import bisect
from nilmdb.utils.interval import Interval
def main(argv = None):
# Set up argument parser
@@ -80,11 +81,22 @@ def main(argv = None):
f.check_dest_metadata({ "prep_raw_source": f.src.path,
"prep_sinefit_source": sinefit.path,
"prep_column": args.column,
"prep_rotation": rotation })
"prep_rotation": repr(rotation) })
# Run the processing function on all data
# Find the intersection of the usual set of intervals we'd filter,
# and the intervals actually present in sinefit data. This is
# what we will process.
filter_int = f.intervals()
sinefit_int = ( Interval(start, end) for (start, end) in
client_sinefit.stream_intervals(
args.sinepath, start = f.start, end = f.end) )
intervals = nilmdb.utils.interval.intersection(filter_int, sinefit_int)
# Run the process (using the helper in the filter module)
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
args.nharm, rotation, args.nshift))
args.nharm, rotation, args.nshift),
intervals = intervals)
def process(data, interval, args, insert_function, final):
(client, sinefit_path, column, nharm, rotation, nshift) = args

View File

@@ -1,13 +1,18 @@
#!/usr/bin/python
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
# Sine wave fitting.
from nilmdb.utils.printf import *
import nilmtools.filter
import nilmdb.client
from nilmdb.utils.time import (timestamp_to_human,
timestamp_to_seconds,
seconds_to_timestamp)
from numpy import *
from scipy import *
#import pylab as p
import operator
import sys
def main(argv = None):
f = nilmtools.filter.Filter()
@@ -59,12 +64,40 @@ def main(argv = None):
f.process_numpy(process, args = (args.column, args.frequency, args.min_amp,
args.min_freq, args.max_freq))
class SuppressibleWarning(object):
def __init__(self, maxcount = 10, maxsuppress = 100):
self.maxcount = maxcount
self.maxsuppress = maxsuppress
self.count = 0
self.last_msg = ""
def _write(self, sec, msg):
if sec:
now = timestamp_to_human(seconds_to_timestamp(sec)) + ": "
else:
now = ""
sys.stderr.write(now + msg)
def warn(self, msg, seconds = None):
self.count += 1
if self.count <= self.maxcount:
self._write(seconds, msg)
if (self.count - self.maxcount) >= self.maxsuppress:
self.reset(seconds)
def reset(self, seconds = None):
if self.count > self.maxcount:
self._write(seconds, sprintf("(%d warnings suppressed)\n",
self.count - self.maxcount))
self.count = 0
def process(data, interval, args, insert_function, final):
(column, f_expected, a_min, f_min, f_max) = args
rows = data.shape[0]
# Estimate sampling frequency from timestamps
fs = 1e6 * (rows-1) / (data[-1][0] - data[0][0])
fs = (rows-1) / (timestamp_to_seconds(data[-1][0]) -
timestamp_to_seconds(data[0][0]))
# Pull out about 3.5 periods of data at once;
# we'll expect to match 3 zero crossings in each window
@@ -74,36 +107,41 @@ def process(data, interval, args, insert_function, final):
if rows < N:
return 0
warn = SuppressibleWarning(3, 1000)
# Process overlapping windows
start = 0
num_zc = 0
last_inserted_timestamp = None
while start < (rows - N):
this = data[start:start+N, column]
t_min = data[start, 0]/1e6
t_max = data[start+N-1, 0]/1e6
t_min = timestamp_to_seconds(data[start, 0])
t_max = timestamp_to_seconds(data[start+N-1, 0])
# Do 4-parameter sine wave fit
(A, f0, phi, C) = sfit4(this, fs)
# Check bounds. If frequency is too crazy, ignore this window
if f0 < f_min or f0 > f_max:
print "frequency", f0, "outside valid range", f_min, "-", f_max
warn.warn(sprintf("frequency %s outside valid range %s - %s\n",
str(f0), str(f_min), str(f_max)), t_min)
start += N
continue
# If amplitude is too low, results are probably just noise
if A < a_min:
print "amplitude", A, "below minimum threshold", a_min
warn.warn(sprintf("amplitude %s below minimum threshold %s\n",
str(A), str(a_min)), t_min)
start += N
continue
#p.plot(arange(N), this)
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
# Period starts when the argument of cosine is 3*pi/2 degrees,
# Period starts when the argument of sine is 0 degrees,
# so we're looking for sample number:
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
# n = (0 - phi) / (f0/fs * 2 * pi)
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
period_n = fs/f0
# Add periods to make N positive
@@ -116,7 +154,13 @@ def process(data, interval, args, insert_function, final):
while zc_n < (N - period_n/2):
#p.plot(zc_n, C, 'ro')
t = t_min + zc_n / fs
insert_function([[t * 1e6, f0, A, C]])
if (last_inserted_timestamp is None or
t > last_inserted_timestamp):
insert_function([[seconds_to_timestamp(t), f0, A, C]])
last_inserted_timestamp = t
warn.reset(t)
else:
warn.warn("timestamp overlap\n", t)
num_zc += 1
last_zc = zc_n
zc_n += period_n
@@ -134,7 +178,13 @@ def process(data, interval, args, insert_function, final):
start = int(round(start + advance))
# Return the number of rows we've processed
print "Marked", num_zc, "zero-crossings in", start, "rows"
warn.reset(last_inserted_timestamp)
if last_inserted_timestamp:
now = timestamp_to_human(seconds_to_timestamp(
last_inserted_timestamp)) + ": "
else:
now = ""
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
return start
def sfit4(data, fs):
@@ -149,9 +199,9 @@ def sfit4(data, fs):
Output:
Parameters [A, f0, phi, C] to fit the equation
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
where n is sample number. Or, as a function of time:
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
by Jim Paris
(Verified to match sfit4.m)
@@ -188,12 +238,11 @@ def sfit4(data, fs):
# if something fails with the least squares fit, etc.
try:
# first guess for A0, B0 using 3-parameter fit (step c)
s = zeros(3)
w = 2*pi*f0
D = c_[cos(w*t), sin(w*t), ones(N)]
s = linalg.lstsq(D, data)[0]
# Now iterate 6 times (step i)
for idx in range(6):
# Now iterate 7 times (step b, plus 6 iterations of step i)
for idx in range(7):
D = c_[cos(w*t), sin(w*t), ones(N),
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
s = linalg.lstsq(D, data)[0] # eqn B.18
@@ -202,7 +251,7 @@ def sfit4(data, fs):
## Extract results
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
f0 = w / (2*pi)
phi = -arctan2(s[1], s[0]) # eqn B.22
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
C = s[2]
return (A, f0, phi, C)
except Exception as e:

304
nilmtools/trainola.py Executable file
View File

@@ -0,0 +1,304 @@
#!/usr/bin/python
from nilmdb.utils.printf import *
import nilmdb.client
import nilmtools.filter
from nilmdb.utils.time import (timestamp_to_human,
timestamp_to_seconds,
seconds_to_timestamp)
from nilmdb.utils import datetime_tz
from nilmdb.utils.interval import Interval
import numpy as np
import scipy
import scipy.signal
from numpy.core.umath_tests import inner1d
import nilmrun
from collections import OrderedDict
import sys
import time
import functools
import collections
class DataError(ValueError):
pass
def build_column_mapping(colinfo, streaminfo):
"""Given the 'columns' list from the JSON data, verify and
pull out a dictionary mapping for the column names/numbers."""
columns = OrderedDict()
for c in colinfo:
col_num = c['index'] + 1 # skip timestamp
if (c['name'] in columns.keys() or col_num in columns.values()):
raise DataError("duplicated columns")
if (c['index'] < 0 or c['index'] >= streaminfo.layout_count):
raise DataError("bad column number")
columns[c['name']] = col_num
if not len(columns):
raise DataError("no columns")
return columns
class Exemplar(object):
def __init__(self, exinfo, min_rows = 10, max_rows = 100000):
"""Given a dictionary entry from the 'exemplars' input JSON,
verify the stream, columns, etc. Then, fetch all the data
into self.data."""
self.name = exinfo['name']
self.url = exinfo['url']
self.stream = exinfo['stream']
self.start = exinfo['start']
self.end = exinfo['end']
self.dest_column = exinfo['dest_column']
# Get stream info
self.client = nilmdb.client.numpyclient.NumpyClient(self.url)
self.info = nilmtools.filter.get_stream_info(self.client, self.stream)
if not self.info:
raise DataError(sprintf("exemplar stream '%s' does not exist " +
"on server '%s'", self.stream, self.url))
# Build up name => index mapping for the columns
self.columns = build_column_mapping(exinfo['columns'], self.info)
# Count points
self.count = self.client.stream_count(self.stream, self.start, self.end)
# Verify count
if self.count == 0:
raise DataError("No data in this exemplar!")
if self.count < min_rows:
raise DataError("Too few data points: " + str(self.count))
if self.count > max_rows:
raise DataError("Too many data points: " + str(self.count))
# Extract the data
datagen = self.client.stream_extract_numpy(self.stream,
self.start, self.end,
self.info.layout,
maxrows = self.count)
self.data = list(datagen)[0]
# Extract just the columns that were specified in self.columns,
# skipping the timestamp.
extract_columns = [ value for (key, value) in self.columns.items() ]
self.data = self.data[:,extract_columns]
# Fix the column indices in e.columns, since we removed/reordered
# columns in self.data
for n, k in enumerate(self.columns):
self.columns[k] = n
# Subtract the means from each column
self.data = self.data - self.data.mean(axis=0)
# Get scale factors for each column by computing dot product
# of each column with itself.
self.scale = inner1d(self.data.T, self.data.T)
# Ensure a minimum (nonzero) scale and convert to list
self.scale = np.maximum(self.scale, [1e-9]).tolist()
def __str__(self):
return sprintf("\"%s\" %s [%s] %s rows",
self.name, self.stream, ",".join(self.columns.keys()),
self.count)
def peak_detect(data, delta):
"""Simple min/max peak detection algorithm, taken from my code
in the disagg.m from the 10-8-5 paper"""
mins = [];
maxs = [];
cur_min = (None, np.inf)
cur_max = (None, -np.inf)
lookformax = False
for (n, p) in enumerate(data):
if p > cur_max[1]:
cur_max = (n, p)
if p < cur_min[1]:
cur_min = (n, p)
if lookformax:
if p < (cur_max[1] - delta):
maxs.append(cur_max)
cur_min = (n, p)
lookformax = False
else:
if p > (cur_min[1] + delta):
mins.append(cur_min)
cur_max = (n, p)
lookformax = True
return (mins, maxs)
def timestamp_to_short_human(timestamp):
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
return dt.strftime("%H:%M:%S")
def trainola_matcher(data, interval, args, insert_func, final_chunk):
"""Perform cross-correlation match"""
( src_columns, dest_count, exemplars ) = args
nrows = data.shape[0]
# We want at least 10% more points than the widest exemplar.
widest = max([ x.count for x in exemplars ])
if (widest * 1.1) > nrows:
return 0
# This is how many points we'll consider valid in the
# cross-correlation.
valid = nrows + 1 - widest
matches = collections.defaultdict(list)
# Try matching against each of the exemplars
for e in exemplars:
corrs = []
# Compute cross-correlation for each column
for col_name in e.columns:
a = data[:, src_columns[col_name]]
b = e.data[:, e.columns[col_name]]
corr = scipy.signal.fftconvolve(a, np.flipud(b), 'valid')[0:valid]
# Scale by the norm of the exemplar
corr = corr / e.scale[e.columns[col_name]]
corrs.append(corr)
# Find the peaks using the column with the largest amplitude
biggest = e.scale.index(max(e.scale))
peaks_minmax = peak_detect(corrs[biggest], 0.1)
peaks = [ p[0] for p in peaks_minmax[1] ]
# Now look at every peak
for row in peaks:
# Correlation for each column must be close enough to 1.
for (corr, scale) in zip(corrs, e.scale):
# The accepted distance from 1 is based on the relative
# amplitude of the column. Use a linear mapping:
# scale 1.0 -> distance 0.1
# scale 0.0 -> distance 1.0
distance = 1 - 0.9 * (scale / e.scale[biggest])
if abs(corr[row] - 1) > distance:
# No match
break
else:
# Successful match
matches[row].append(e)
# Insert matches into destination stream.
matched_rows = sorted(matches.keys())
out = np.zeros((len(matched_rows), dest_count + 1))
for n, row in enumerate(matched_rows):
# Fill timestamp
out[n][0] = data[row, 0]
# Mark matched exemplars
for exemplar in matches[row]:
out[n, exemplar.dest_column + 1] = 1.0
# Insert it
insert_func(out)
# Return how many rows we processed
valid = max(valid, 0)
printf(" [%s] matched %d exemplars in %d rows\n",
timestamp_to_short_human(data[0][0]), np.sum(out[:,1:]), valid)
return valid
def trainola(conf):
print "Trainola", nilmtools.__version__
# Load main stream data
url = conf['url']
src_path = conf['stream']
dest_path = conf['dest_stream']
start = conf['start']
end = conf['end']
# Get info for the src and dest streams
src_client = nilmdb.client.numpyclient.NumpyClient(url)
src = nilmtools.filter.get_stream_info(src_client, src_path)
if not src:
raise DataError("source path '" + src_path + "' does not exist")
src_columns = build_column_mapping(conf['columns'], src)
dest_client = nilmdb.client.numpyclient.NumpyClient(url)
dest = nilmtools.filter.get_stream_info(dest_client, dest_path)
if not dest:
raise DataError("destination path '" + dest_path + "' does not exist")
printf("Source:\n")
printf(" %s [%s]\n", src.path, ",".join(src_columns.keys()))
printf("Destination:\n")
printf(" %s (%s columns)\n", dest.path, dest.layout_count)
# Pull in the exemplar data
exemplars = []
for n, exinfo in enumerate(conf['exemplars']):
printf("Loading exemplar %d:\n", n)
e = Exemplar(exinfo)
col = e.dest_column
if col < 0 or col >= dest.layout_count:
raise DataError(sprintf("bad destination column number %d\n" +
"dest stream only has 0 through %d",
col, dest.layout_count - 1))
printf(" %s, output column %d\n", str(e), col)
exemplars.append(e)
if len(exemplars) == 0:
raise DataError("missing exemplars")
# Verify that the exemplar columns are all represented in the main data
for n, ex in enumerate(exemplars):
for col in ex.columns:
if col not in src_columns:
raise DataError(sprintf("Exemplar %d column %s is not "
"available in source data", n, col))
# Figure out which intervals we should process
intervals = ( Interval(s, e) for (s, e) in
src_client.stream_intervals(src_path,
diffpath = dest_path,
start = start, end = end) )
intervals = nilmdb.utils.interval.optimize(intervals)
# Do the processing
rows = 100000
extractor = functools.partial(src_client.stream_extract_numpy,
src.path, layout = src.layout, maxrows = rows)
inserter = functools.partial(dest_client.stream_insert_numpy_context,
dest.path)
start = time.time()
processed_time = 0
printf("Processing intervals:\n")
for interval in intervals:
printf("%s\n", interval.human_string())
nilmtools.filter.process_numpy_interval(
interval, extractor, inserter, rows * 3,
trainola_matcher, (src_columns, dest.layout_count, exemplars))
processed_time += (timestamp_to_seconds(interval.end) -
timestamp_to_seconds(interval.start))
elapsed = max(time.time() - start, 1e-3)
printf("Done. Processed %.2f seconds per second.\n",
processed_time / elapsed)
def main(argv = None):
import simplejson as json
import sys
if argv is None:
argv = sys.argv[1:]
if len(argv) != 1:
raise DataError("need one argument, either a dictionary or JSON string")
try:
# Passed in a JSON string (e.g. on the command line)
conf = json.loads(argv[0])
except TypeError as e:
# Passed in the config dictionary (e.g. from NilmRun)
conf = argv[0]
return trainola(conf)
if __name__ == "__main__":
main()

View File

@@ -30,7 +30,7 @@ except ImportError:
# Versioneer manages version numbers from git tags.
# https://github.com/warner/python-versioneer
import versioneer
versioneer.versionfile_source = 'src/_version.py'
versioneer.versionfile_source = 'nilmtools/_version.py'
versioneer.versionfile_build = 'nilmtools/_version.py'
versioneer.tag_prefix = 'nilmtools-'
versioneer.parentdir_prefix = 'nilmtools-'
@@ -61,14 +61,14 @@ setup(name='nilmtools',
long_description = "NILM Database Tools",
license = "Proprietary",
author_email = 'jim@jtan.com',
install_requires = [ 'nilmdb >= 1.6.0',
install_requires = [ 'nilmdb >= 1.8.5',
'numpy',
'scipy',
'matplotlib',
'python-daemon >= 1.5',
#'matplotlib',
],
packages = [ 'nilmtools',
],
package_dir = { 'nilmtools': 'src' },
entry_points = {
'console_scripts': [
'nilm-decimate = nilmtools.decimate:main',
@@ -79,6 +79,9 @@ setup(name='nilmtools',
'nilm-copy-wildcard = nilmtools.copy_wildcard:main',
'nilm-sinefit = nilmtools.sinefit:main',
'nilm-cleanup = nilmtools.cleanup:main',
'nilm-median = nilmtools.median:main',
'nilm-trainola = nilmtools.trainola:main',
'nilm-pipewatch = nilmtools.pipewatch:main',
],
},
zip_safe = False,