Compare commits

...

9 Commits

Author SHA1 Message Date
492445a469 Split off useful math functions to math.py 2013-08-02 17:27:39 -04:00
33c3586bea trainola: suppress peaks if larger ones are nearby
Might fix the problem Mark noticed where turn-off transients
are erroneously matching the drop that follows startup transients.
2013-07-31 19:12:16 -04:00
c1e0f8ffbc Fix bug in copy_one 2013-07-31 14:47:16 -04:00
d2853bdb0e Add test case for bad trainola detections 2013-07-30 20:35:54 -04:00
a4d4bc22fc Add --skip option to nilm-insert 2013-07-30 18:25:47 -04:00
6090dd6112 prep: only process intervals present in both raw & sinefit 2013-07-30 14:55:06 -04:00
Sharon NILM
9c0d9ad324 Sample scripts from Sharon 2013-07-29 18:37:55 -04:00
Sharon NILM
8b9c5d4898 Fix daemon dependency 2013-07-29 17:40:51 -04:00
cf2c28b0fb Add --daemon flag 2013-07-29 17:16:18 -04:00
16 changed files with 365 additions and 189 deletions

View File

@@ -8,26 +8,33 @@ else
@echo "Try 'make install'"
endif
test: test_pipewatch
test: test_trainola3
test_pipewatch:
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
test_trainola:
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
test_trainola2:
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
test_trainola3:
-nilmtool -u "http://bucket/nilmdb" destroy -R /test/jim
nilmtool -u "http://bucket/nilmdb" create /test/jim uint8_3
nilmtools/trainola.py "$$(cat extras/trainola-test-param-3.js)"
nilmtool -u "http://bucket/nilmdb" extract /test/jim -s min -e max
test_cleanup:
nilmtools/cleanup.py -e extras/cleanup.cfg
nilmtools/cleanup.py extras/cleanup.cfg
test_insert:
nilmtools/insert.py --file --dry-run /test/foo </dev/null
nilmtools/insert.py --skip --file --dry-run /foo/bar ~/data/20130311T2100.prep1.gz ~/data/20130311T2100.prep1.gz ~/data/20130311T2200.prep1.gz
test_copy:
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
@@ -46,7 +53,8 @@ test_prep: /tmp/raw.dat
nilmtool create /test/sinefit float32_3
nilmtool create /test/prep float32_8
nilmtool insert -s '@0' -t -r 8000 /test/raw /tmp/raw.dat
nilmtools/sinefit.py -a 0.5 -c 1 /test/raw /test/sinefit
nilmtools/sinefit.py -a 0.5 -c 1 -s '@0' -e '@5000000' /test/raw /test/sinefit
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtool extract -s min -e max /test/prep | head -20

View File

@@ -6,9 +6,9 @@ Prerequisites:
# Runtime and build environments
sudo apt-get install python2.7 python2.7-dev python-setuptools
sudo apt-get install python-numpy python-scipy
sudo apt-get install python-numpy python-scipy python-daemon
nilmdb (1.8.1+)
nilmdb (1.8.5+)
Install:

View File

@@ -0,0 +1,10 @@
#!/bin/bash
# Start the ethstream capture using nilm-pipewatch
# Bail out on errors
set -e
nilm-pipewatch --daemon --lock "/tmp/nilmdb-capture.lock" --timeout 30 \
"ethstream -a 192.168.1.209 -n 9 -r 8000 -N" \
"nilm-insert -m 10 -r 8000 --live /sharon/raw"

View File

@@ -0,0 +1,8 @@
[/sharon/prep-*]
keep = 1y
[/sharon/raw]
keep = 2w
[/sharon/sinefit]
keep = 1y

View File

@@ -0,0 +1,9 @@
# Install this by running "crontab crontab" (will replace existing crontab)
# m h dom mon dow cmd
# Run NilmDB processing every 5 minutes
*/5 * * * * chronic /home/nilm/data/process.sh
# Check the capture process every minute
*/1 * * * * chronic /home/nilm/data/capture.sh

View File

@@ -0,0 +1,28 @@
#!/bin/bash
# Run all necessary processing on NilmDB data.
# Bail out on errors
set -e
# Ensure only one copy of this code runs at a time:
LOCKFILE="/tmp/nilmdb-process.lock"
exec 99>"$LOCKFILE"
if ! flock -n -x 99 ; then
echo "NilmDB processing already running, giving up..."
exit 0
fi
trap 'rm -f "$LOCKFILE"' 0
# sinefit on phase A voltage
nilm-sinefit -c 5 /sharon/raw /sharon/sinefit
# prep on A, B, C with appropriate rotations
nilm-prep -c 1 -r 0 /sharon/raw /sharon/sinefit /sharon/prep-a
nilm-prep -c 2 -r 120 /sharon/raw /sharon/sinefit /sharon/prep-b
nilm-prep -c 3 -r 240 /sharon/raw /sharon/sinefit /sharon/prep-c
# decimate raw and prep data
nilm-decimate-auto /sharon/raw /sharon/prep*
# run cleanup
nilm-cleanup --yes /home/nilm/data/cleanup.cfg

View File

@@ -0,0 +1,40 @@
{
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"dest_stream": "/test/jim",
"start": 1364184839901599,
"end": 1364184942407610.2,
"columns": [ { "index": 0, "name": "P1" } ],
"exemplars": [
{
"name": "A - True DBL Freezer ON",
"dest_column": 0,
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"columns": [ { "index": 0, "name": "P1" } ],
"start": 1365277707649000,
"end": 1365277710705000
},
{
"name": "A - Boiler 1 Fan OFF",
"dest_column": 1,
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"columns": [ { "index": 0, "name": "P1" } ],
"start": 1364188370735000,
"end": 1364188373819000
},
{
"name": "A - True DBL Freezer OFF",
"dest_column": 2,
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"columns": [ { "index": 0, "name": "P1" } ],
"start": 1365278087982000,
"end": 1365278089340000
}
]
}

View File

@@ -32,7 +32,7 @@ def main(argv = None):
extractor = NumpyClient(f.src.url).stream_extract_numpy
inserter = NumpyClient(f.dest.url).stream_insert_numpy_context
for i in f.intervals():
print "Processing", f.interval_string(i)
print "Processing", i.human_string()
with inserter(f.dest.path, i.start, i.end) as insert_ctx:
for data in extractor(f.src.path, i.start, i.end):
insert_ctx.insert(data)

View File

@@ -316,7 +316,8 @@ class Filter(object):
self._client_dest.stream_update_metadata(self.dest.path, data)
# The main filter processing method.
def process_numpy(self, function, args = None, rows = 100000):
def process_numpy(self, function, args = None, rows = 100000,
intervals = None):
"""Calls process_numpy_interval for each interval that currently
exists in self.src, but doesn't exist in self.dest. It will
process the data in chunks as follows:
@@ -325,6 +326,9 @@ class Filter(object):
corresponding to the data. The data is converted to a Numpy
array in chunks of 'rows' rows at a time.
If 'intervals' is not None, process those intervals instead of
the default list.
'function' should be defined as:
# def function(data, interval, args, insert_func, final)
@@ -358,7 +362,7 @@ class Filter(object):
maxrows = rows)
inserter_func = functools.partial(inserter, self.dest.path)
for interval in self.intervals():
for interval in (intervals or self.intervals()):
print "Processing", interval.human_string()
process_numpy_interval(interval, extractor_func, inserter_func,
rows * 3, function, args)

View File

@@ -53,7 +53,8 @@ def parse_args(argv = None):
is stepped forward to match 'clock'.
- If 'data' is running ahead, there is overlap in the data, and an
error is raised.
error is raised. If '--ignore' is specified, the current file
is skipped instead of raising an error.
"""))
parser.add_argument("-u", "--url", action="store",
default="http://localhost/nilmdb/",
@@ -61,6 +62,8 @@ def parse_args(argv = None):
group = parser.add_argument_group("Misc options")
group.add_argument("-D", "--dry-run", action="store_true",
help="Parse files, but don't insert any data")
group.add_argument("-s", "--skip", action="store_true",
help="Skip files if the data would overlap")
group.add_argument("-m", "--max-gap", action="store", default=10.0,
metavar="SEC", type=float,
help="Max discrepency between clock and data "
@@ -235,6 +238,10 @@ def main(argv = None):
"is %s but clock time is only %s",
timestamp_to_human(data_ts),
timestamp_to_human(clock_ts))
if args.skip:
printf("%s\n", err)
printf("Skipping the remainder of this file\n")
break
raise ParseError(filename, err)
if (data_ts + max_gap) < clock_ts:

107
nilmtools/math.py Normal file
View File

@@ -0,0 +1,107 @@
#!/usr/bin/python
# Miscellaenous useful mathematical functions
from nilmdb.utils.printf import *
from numpy import *
from scipy import *
def sfit4(data, fs):
"""(A, f0, phi, C) = sfit4(data, fs)
Compute 4-parameter (unknown-frequency) least-squares fit to
sine-wave data, according to IEEE Std 1241-2010 Annex B
Input:
data vector of input samples
fs sampling rate (Hz)
Output:
Parameters [A, f0, phi, C] to fit the equation
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
where n is sample number. Or, as a function of time:
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
by Jim Paris
(Verified to match sfit4.m)
"""
N = len(data)
t = linspace(0, (N-1) / float(fs), N)
## Estimate frequency using FFT (step b)
Fc = fft(data)
F = abs(Fc)
F[0] = 0 # eliminate DC
# Find pair of spectral lines with largest amplitude:
# resulting values are in F(i) and F(i+1)
i = argmax(F[0:int(N/2)] + F[1:int(N/2+1)])
# Interpolate FFT to get a better result (from Markus [B37])
U1 = real(Fc[i])
U2 = real(Fc[i+1])
V1 = imag(Fc[i])
V2 = imag(Fc[i+1])
n = 2 * pi / N
ni1 = n * i
ni2 = n * (i+1)
K = ((V2-V1)*sin(ni1) + (U2-U1)*cos(ni1)) / (U2-U1)
Z1 = V1 * (K - cos(ni1)) / sin(ni1) + U1
Z2 = V2 * (K - cos(ni2)) / sin(ni2) + U2
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
# Convert to Hz
f0 = i * float(fs) / N
# Fit it. We'll catch exceptions here and just returns zeros
# if something fails with the least squares fit, etc.
try:
# first guess for A0, B0 using 3-parameter fit (step c)
s = zeros(3)
w = 2*pi*f0
# Now iterate 7 times (step b, plus 6 iterations of step i)
for idx in range(7):
D = c_[cos(w*t), sin(w*t), ones(N),
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
s = linalg.lstsq(D, data)[0] # eqn B.18
w = w + s[3] # update frequency estimate
## Extract results
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
f0 = w / (2*pi)
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
C = s[2]
return (A, f0, phi, C)
except Exception as e:
# something broke down; just return zeros
return (0, 0, 0, 0)
def peak_detect(data, delta = 0.1):
"""Simple min/max peak detection algorithm, taken from my code
in the disagg.m from the 10-8-5 paper.
Returns an array of peaks: each peak is a tuple
(n, p, is_max)
where n is the row number in 'data', and p is 'data[n]',
and is_max is True if this is a maximum, False if it's a minimum,
"""
peaks = [];
cur_min = (None, inf)
cur_max = (None, -inf)
lookformax = False
for (n, p) in enumerate(data):
if p > cur_max[1]:
cur_max = (n, p)
if p < cur_min[1]:
cur_min = (n, p)
if lookformax:
if p < (cur_max[1] - delta):
peaks.append((cur_max[0], cur_max[1], True))
cur_min = (n, p)
lookformax = False
else:
if p > (cur_min[1] + delta):
peaks.append((cur_min[0], cur_min[1], False))
cur_max = (n, p)
lookformax = True
return peaks

View File

@@ -15,6 +15,7 @@ import threading
import select
import signal
import Queue
import daemon
def parse_args(argv = None):
parser = argparse.ArgumentParser(
@@ -29,6 +30,8 @@ def parse_args(argv = None):
Intended for use with ethstream (generator) and nilm-insert
(consumer). Commands are executed through the shell.
""")
parser.add_argument("-d", "--daemon", action="store_true",
help="Run in background")
parser.add_argument("-l", "--lock", metavar="FILENAME", action="store",
default=tempfile.gettempdir() +
"/nilm-pipewatch.lock",
@@ -74,82 +77,92 @@ def watcher_thread(queue, procs):
return
time.sleep(0.25)
def pipewatch(args):
# Run the processes, etc
with open(os.devnull, "r") as devnull:
generator = subprocess.Popen(args.generator, shell = True,
bufsize = -1, close_fds = True,
stdin = devnull,
stdout = subprocess.PIPE,
stderr = None)
consumer = subprocess.Popen(args.consumer, shell = True,
bufsize = -11, close_fds = True,
stdin = subprocess.PIPE,
stdout = None, stderr = None)
queue = Queue.Queue(maxsize = 32)
reader = threading.Thread(target = reader_thread,
args = (queue, generator.stdout.fileno()))
reader.start()
watcher = threading.Thread(target = watcher_thread,
args = (queue, [generator, consumer]))
watcher.start()
try:
while True:
try:
data = queue.get(True, args.timeout)
if data is None:
break
consumer.stdin.write(data)
except Queue.Empty:
# Timeout: kill the generator
fprintf(sys.stderr, "pipewatch: timeout\n")
generator.terminate()
break
generator.stdout.close()
consumer.stdin.close()
except IOError:
fprintf(sys.stderr, "pipewatch: I/O error\n")
def kill(proc):
# Wait for a process to end, or kill it
def poll_timeout(proc, timeout):
for x in range(1+int(timeout / 0.1)):
if proc.poll() is not None:
break
time.sleep(0.1)
return proc.poll()
try:
if poll_timeout(proc, 0.5) is None:
proc.terminate()
if poll_timeout(proc, 0.5) is None:
proc.kill()
except OSError:
pass
return poll_timeout(proc, 0.5)
# Wait for them to die, or kill them
gret = kill(generator)
cret = kill(consumer)
fprintf(sys.stderr, "pipewatch: generator returned %d, " +
"consumer returned %d\n", gret, cret)
if gret == 0 and cret == 0:
sys.exit(0)
sys.exit(1)
def main(argv = None):
args = parse_args(argv)
with open(args.lock, "w") as lockfile:
if not nilmdb.utils.lock.exclusive_lock(lockfile):
printf("pipewatch process already running (according to %s)\n",
args.lock)
sys.exit(0)
with open(os.devnull, "r") as devnull:
generator = subprocess.Popen(args.generator, shell = True,
bufsize = -1, close_fds = True,
stdin = devnull,
stdout = subprocess.PIPE,
stderr = None)
consumer = subprocess.Popen(args.consumer, shell = True,
bufsize = -11, close_fds = True,
stdin = subprocess.PIPE,
stdout = None, stderr = None)
queue = Queue.Queue(maxsize = 32)
reader = threading.Thread(target = reader_thread,
args = (queue, generator.stdout.fileno()))
reader.start()
watcher = threading.Thread(target = watcher_thread,
args = (queue, [generator, consumer]))
watcher.start()
try:
while True:
try:
data = queue.get(True, args.timeout)
if data is None:
break
consumer.stdin.write(data)
except Queue.Empty:
# Timeout: kill the generator
fprintf(sys.stderr, "pipewatch: timeout\n")
generator.terminate()
break
generator.stdout.close()
consumer.stdin.close()
except IOError:
fprintf(sys.stderr, "pipewatch: I/O error\n")
def kill(proc):
# Wait for a process to end, or kill it
def poll_timeout(proc, timeout):
for x in range(1+int(timeout / 0.1)):
if proc.poll() is not None:
break
time.sleep(0.1)
return proc.poll()
try:
if poll_timeout(proc, 0.5) is None:
proc.terminate()
if poll_timeout(proc, 0.5) is None:
proc.kill()
except OSError:
pass
return poll_timeout(proc, 0.5)
# Wait for them to die, or kill them
gret = kill(generator)
cret = kill(consumer)
fprintf(sys.stderr, "pipewatch: generator returned %d, " +
"consumer returned %d\n", gret, cret)
if gret == 0 and cret == 0:
sys.exit(0)
sys.exit(1)
lockfile = open(args.lock, "w")
if not nilmdb.utils.lock.exclusive_lock(lockfile):
printf("pipewatch process already running (according to %s)\n",
args.lock)
sys.exit(0)
try:
os.unlink(args.lock)
except OSError:
pass
# Run as a daemon if requested, otherwise run directly.
if args.daemon:
with daemon.DaemonContext(files_preserve = [ lockfile ]):
pipewatch(args)
else:
pipewatch(args)
finally:
# Clean up lockfile
try:
os.unlink(args.lock)
except OSError:
pass
if __name__ == "__main__":
main()

View File

@@ -12,6 +12,7 @@ import scipy.fftpack
import scipy.signal
#from matplotlib import pyplot as p
import bisect
from nilmdb.utils.interval import Interval
def main(argv = None):
# Set up argument parser
@@ -82,9 +83,20 @@ def main(argv = None):
"prep_column": args.column,
"prep_rotation": repr(rotation) })
# Run the processing function on all data
# Find the intersection of the usual set of intervals we'd filter,
# and the intervals actually present in sinefit data. This is
# what we will process.
filter_int = f.intervals()
sinefit_int = ( Interval(start, end) for (start, end) in
client_sinefit.stream_intervals(
args.sinepath, start = f.start, end = f.end) )
intervals = nilmdb.utils.interval.intersection(filter_int, sinefit_int)
# Run the process (using the helper in the filter module)
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
args.nharm, rotation, args.nshift))
args.nharm, rotation, args.nshift),
intervals = intervals)
def process(data, interval, args, insert_function, final):
(client, sinefit_path, column, nharm, rotation, nshift) = args

View File

@@ -3,6 +3,7 @@
# Sine wave fitting.
from nilmdb.utils.printf import *
import nilmtools.filter
import nilmtools.math
import nilmdb.client
from nilmdb.utils.time import (timestamp_to_human,
timestamp_to_seconds,
@@ -11,7 +12,6 @@ from nilmdb.utils.time import (timestamp_to_human,
from numpy import *
from scipy import *
#import pylab as p
import operator
import sys
def main(argv = None):
@@ -119,7 +119,7 @@ def process(data, interval, args, insert_function, final):
t_max = timestamp_to_seconds(data[start+N-1, 0])
# Do 4-parameter sine wave fit
(A, f0, phi, C) = sfit4(this, fs)
(A, f0, phi, C) = nilmtools.math.sfit4(this, fs)
# Check bounds. If frequency is too crazy, ignore this window
if f0 < f_min or f0 > f_max:
@@ -187,76 +187,5 @@ def process(data, interval, args, insert_function, final):
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
return start
def sfit4(data, fs):
"""(A, f0, phi, C) = sfit4(data, fs)
Compute 4-parameter (unknown-frequency) least-squares fit to
sine-wave data, according to IEEE Std 1241-2010 Annex B
Input:
data vector of input samples
fs sampling rate (Hz)
Output:
Parameters [A, f0, phi, C] to fit the equation
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
where n is sample number. Or, as a function of time:
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
by Jim Paris
(Verified to match sfit4.m)
"""
N = len(data)
t = linspace(0, (N-1) / float(fs), N)
## Estimate frequency using FFT (step b)
Fc = fft(data)
F = abs(Fc)
F[0] = 0 # eliminate DC
# Find pair of spectral lines with largest amplitude:
# resulting values are in F(i) and F(i+1)
i = argmax(F[0:int(N/2)] + F[1:int(N/2+1)])
# Interpolate FFT to get a better result (from Markus [B37])
U1 = real(Fc[i])
U2 = real(Fc[i+1])
V1 = imag(Fc[i])
V2 = imag(Fc[i+1])
n = 2 * pi / N
ni1 = n * i
ni2 = n * (i+1)
K = ((V2-V1)*sin(ni1) + (U2-U1)*cos(ni1)) / (U2-U1)
Z1 = V1 * (K - cos(ni1)) / sin(ni1) + U1
Z2 = V2 * (K - cos(ni2)) / sin(ni2) + U2
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
# Convert to Hz
f0 = i * float(fs) / N
# Fit it. We'll catch exceptions here and just returns zeros
# if something fails with the least squares fit, etc.
try:
# first guess for A0, B0 using 3-parameter fit (step c)
s = zeros(3)
w = 2*pi*f0
# Now iterate 7 times (step b, plus 6 iterations of step i)
for idx in range(7):
D = c_[cos(w*t), sin(w*t), ones(N),
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
s = linalg.lstsq(D, data)[0] # eqn B.18
w = w + s[3] # update frequency estimate
## Extract results
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
f0 = w / (2*pi)
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
C = s[2]
return (A, f0, phi, C)
except Exception as e:
# something broke down, just return zeros
return (0, 0, 0, 0)
if __name__ == "__main__":
main()

View File

@@ -3,6 +3,7 @@
from nilmdb.utils.printf import *
import nilmdb.client
import nilmtools.filter
import nilmtools.math
from nilmdb.utils.time import (timestamp_to_human,
timestamp_to_seconds,
seconds_to_timestamp)
@@ -104,31 +105,6 @@ class Exemplar(object):
self.name, self.stream, ",".join(self.columns.keys()),
self.count)
def peak_detect(data, delta):
"""Simple min/max peak detection algorithm, taken from my code
in the disagg.m from the 10-8-5 paper"""
mins = [];
maxs = [];
cur_min = (None, np.inf)
cur_max = (None, -np.inf)
lookformax = False
for (n, p) in enumerate(data):
if p > cur_max[1]:
cur_max = (n, p)
if p < cur_min[1]:
cur_min = (n, p)
if lookformax:
if p < (cur_max[1] - delta):
maxs.append(cur_max)
cur_min = (n, p)
lookformax = False
else:
if p > (cur_min[1] + delta):
mins.append(cur_min)
cur_max = (n, p)
lookformax = True
return (mins, maxs)
def timestamp_to_short_human(timestamp):
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
return dt.strftime("%H:%M:%S")
@@ -164,11 +140,35 @@ def trainola_matcher(data, interval, args, insert_func, final_chunk):
# Find the peaks using the column with the largest amplitude
biggest = e.scale.index(max(e.scale))
peaks_minmax = peak_detect(corrs[biggest], 0.1)
peaks = [ p[0] for p in peaks_minmax[1] ]
peaks = nilmtools.math.peak_detect(corrs[biggest], 0.1)
# Now look at every peak
for row in peaks:
# To try to reduce false positives, discard peaks where
# there's a higher-magnitude peak (either min or max) within
# one exemplar width nearby.
good_peak_locations = []
for (i, (n, p, is_max)) in enumerate(peaks):
if not is_max:
continue
ok = True
# check up to 'e.count' rows before this one
j = i-1
while ok and j >= 0 and peaks[j][0] > (n - e.count):
if abs(peaks[j][1]) > abs(p):
ok = False
j -= 1
# check up to 'e.count' rows after this one
j = i+1
while ok and j < len(peaks) and peaks[j][0] < (n + e.count):
if abs(peaks[j][1]) > abs(p):
ok = False
j += 1
if ok:
good_peak_locations.append(n)
# Now look at all good peaks
for row in good_peak_locations:
# Correlation for each column must be close enough to 1.
for (corr, scale) in zip(corrs, e.scale):
# The accepted distance from 1 is based on the relative

View File

@@ -61,9 +61,10 @@ setup(name='nilmtools',
long_description = "NILM Database Tools",
license = "Proprietary",
author_email = 'jim@jtan.com',
install_requires = [ 'nilmdb >= 1.8.1',
install_requires = [ 'nilmdb >= 1.8.5',
'numpy',
'scipy',
'python-daemon >= 1.5',
#'matplotlib',
],
packages = [ 'nilmtools',