Compare commits
9 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
4f6bc48619 | |||
cf9eb0ed48 | |||
32066fc260 | |||
739da3f973 | |||
83ad18ebf6 | |||
c76d527f95 | |||
b8a73278e7 | |||
ce0691d6c4 | |||
4da658e960 |
@@ -5,10 +5,10 @@ by Jim Paris <jim@jtan.com>
|
|||||||
Prerequisites:
|
Prerequisites:
|
||||||
|
|
||||||
# Runtime and build environments
|
# Runtime and build environments
|
||||||
sudo apt-get install python2.7 python2.7-dev python-setuptools
|
sudo apt-get install python2.7 python2.7-dev python-setuptools python-pip
|
||||||
sudo apt-get install python-numpy python-scipy python-matplotlib
|
sudo apt-get install python-numpy python-scipy
|
||||||
|
|
||||||
nilmdb (1.5.0+)
|
nilmdb (1.6.3+)
|
||||||
|
|
||||||
Install:
|
Install:
|
||||||
|
|
||||||
|
5
setup.py
5
setup.py
@@ -61,10 +61,10 @@ setup(name='nilmtools',
|
|||||||
long_description = "NILM Database Tools",
|
long_description = "NILM Database Tools",
|
||||||
license = "Proprietary",
|
license = "Proprietary",
|
||||||
author_email = 'jim@jtan.com',
|
author_email = 'jim@jtan.com',
|
||||||
install_requires = [ 'nilmdb >= 1.6.0',
|
install_requires = [ 'nilmdb >= 1.6.3',
|
||||||
'numpy',
|
'numpy',
|
||||||
'scipy',
|
'scipy',
|
||||||
'matplotlib',
|
#'matplotlib',
|
||||||
],
|
],
|
||||||
packages = [ 'nilmtools',
|
packages = [ 'nilmtools',
|
||||||
],
|
],
|
||||||
@@ -79,6 +79,7 @@ setup(name='nilmtools',
|
|||||||
'nilm-copy-wildcard = nilmtools.copy_wildcard:main',
|
'nilm-copy-wildcard = nilmtools.copy_wildcard:main',
|
||||||
'nilm-sinefit = nilmtools.sinefit:main',
|
'nilm-sinefit = nilmtools.sinefit:main',
|
||||||
'nilm-cleanup = nilmtools.cleanup:main',
|
'nilm-cleanup = nilmtools.cleanup:main',
|
||||||
|
'nilm-median = nilmtools.median:main',
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
zip_safe = False,
|
zip_safe = False,
|
||||||
|
@@ -236,8 +236,14 @@ class Filter(object):
|
|||||||
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
||||||
if not self.force_metadata:
|
if not self.force_metadata:
|
||||||
for key in data:
|
for key in data:
|
||||||
wanted = str(data[key])
|
wanted = data[key]
|
||||||
|
if not isinstance(wanted, basestring):
|
||||||
|
wanted = str(wanted)
|
||||||
val = metadata.get(key, wanted)
|
val = metadata.get(key, wanted)
|
||||||
|
# Force UTF-8 encoding for comparison and display
|
||||||
|
wanted = wanted.encode('utf-8')
|
||||||
|
val = val.encode('utf-8')
|
||||||
|
key = key.encode('utf-8')
|
||||||
if val != wanted and self.dest.rows > 0:
|
if val != wanted and self.dest.rows > 0:
|
||||||
m = "Metadata in destination stream:\n"
|
m = "Metadata in destination stream:\n"
|
||||||
m += " %s = %s\n" % (key, val)
|
m += " %s = %s\n" % (key, val)
|
||||||
|
43
src/median.py
Executable file
43
src/median.py
Executable file
@@ -0,0 +1,43 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
import nilmtools.filter, scipy.signal
|
||||||
|
|
||||||
|
def main(argv = None):
|
||||||
|
f = nilmtools.filter.Filter()
|
||||||
|
parser = f.setup_parser("Median Filter")
|
||||||
|
group = parser.add_argument_group("Median filter options")
|
||||||
|
group.add_argument("-z", "--size", action="store", type=int, default=25,
|
||||||
|
help = "median filter size (default %(default)s)")
|
||||||
|
group.add_argument("-d", "--difference", action="store_true",
|
||||||
|
help = "store difference rather than filtered values")
|
||||||
|
|
||||||
|
try:
|
||||||
|
args = f.parse_args(argv)
|
||||||
|
except nilmtools.filter.MissingDestination as e:
|
||||||
|
print "Source is %s (%s)" % (e.src.path, e.src.layout)
|
||||||
|
print "Destination %s doesn't exist" % (e.dest.path)
|
||||||
|
print "You could make it with a command like:"
|
||||||
|
print " nilmtool -u %s create %s %s" % (e.dest.url,
|
||||||
|
e.dest.path, e.src.layout)
|
||||||
|
raise SystemExit(1)
|
||||||
|
|
||||||
|
meta = f.client_src.stream_get_metadata(f.src.path)
|
||||||
|
f.check_dest_metadata({ "median_filter_source": f.src.path,
|
||||||
|
"median_filter_size": args.size,
|
||||||
|
"median_filter_difference": repr(args.difference) })
|
||||||
|
|
||||||
|
f.process_numpy(median_filter, args = (args.size, args.difference))
|
||||||
|
|
||||||
|
def median_filter(data, interval, args, insert, final):
|
||||||
|
(size, diff) = args
|
||||||
|
(rows, cols) = data.shape
|
||||||
|
for i in range(cols - 1):
|
||||||
|
filtered = scipy.signal.medfilt(data[:, i+1], size)
|
||||||
|
if diff:
|
||||||
|
data[:, i+1] -= filtered
|
||||||
|
else:
|
||||||
|
data[:, i+1] = filtered
|
||||||
|
insert(data)
|
||||||
|
return rows
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@@ -80,7 +80,7 @@ def main(argv = None):
|
|||||||
f.check_dest_metadata({ "prep_raw_source": f.src.path,
|
f.check_dest_metadata({ "prep_raw_source": f.src.path,
|
||||||
"prep_sinefit_source": sinefit.path,
|
"prep_sinefit_source": sinefit.path,
|
||||||
"prep_column": args.column,
|
"prep_column": args.column,
|
||||||
"prep_rotation": rotation })
|
"prep_rotation": repr(rotation) })
|
||||||
|
|
||||||
# Run the processing function on all data
|
# Run the processing function on all data
|
||||||
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
|
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
|
||||||
|
@@ -2,12 +2,18 @@
|
|||||||
|
|
||||||
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
|
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
|
||||||
|
|
||||||
|
from nilmdb.utils.printf import *
|
||||||
import nilmtools.filter
|
import nilmtools.filter
|
||||||
import nilmdb.client
|
import nilmdb.client
|
||||||
|
from nilmdb.utils.time import (timestamp_to_human,
|
||||||
|
timestamp_to_seconds,
|
||||||
|
seconds_to_timestamp)
|
||||||
|
|
||||||
from numpy import *
|
from numpy import *
|
||||||
from scipy import *
|
from scipy import *
|
||||||
#import pylab as p
|
#import pylab as p
|
||||||
import operator
|
import operator
|
||||||
|
import sys
|
||||||
|
|
||||||
def main(argv = None):
|
def main(argv = None):
|
||||||
f = nilmtools.filter.Filter()
|
f = nilmtools.filter.Filter()
|
||||||
@@ -59,12 +65,40 @@ def main(argv = None):
|
|||||||
f.process_numpy(process, args = (args.column, args.frequency, args.min_amp,
|
f.process_numpy(process, args = (args.column, args.frequency, args.min_amp,
|
||||||
args.min_freq, args.max_freq))
|
args.min_freq, args.max_freq))
|
||||||
|
|
||||||
|
class SuppressibleWarning(object):
|
||||||
|
def __init__(self, maxcount = 10, maxsuppress = 100):
|
||||||
|
self.maxcount = maxcount
|
||||||
|
self.maxsuppress = maxsuppress
|
||||||
|
self.count = 0
|
||||||
|
self.last_msg = ""
|
||||||
|
|
||||||
|
def _write(self, sec, msg):
|
||||||
|
if sec:
|
||||||
|
now = timestamp_to_human(seconds_to_timestamp(sec)) + ": "
|
||||||
|
else:
|
||||||
|
now = ""
|
||||||
|
sys.stderr.write(now + msg)
|
||||||
|
|
||||||
|
def warn(self, msg, seconds = None):
|
||||||
|
self.count += 1
|
||||||
|
if self.count <= self.maxcount:
|
||||||
|
self._write(seconds, msg)
|
||||||
|
if (self.count - self.maxcount) >= self.maxsuppress:
|
||||||
|
self.reset(seconds)
|
||||||
|
|
||||||
|
def reset(self, seconds = None):
|
||||||
|
if self.count > self.maxcount:
|
||||||
|
self._write(seconds, sprintf("(%d warnings suppressed)\n",
|
||||||
|
self.count - self.maxcount))
|
||||||
|
self.count = 0
|
||||||
|
|
||||||
def process(data, interval, args, insert_function, final):
|
def process(data, interval, args, insert_function, final):
|
||||||
(column, f_expected, a_min, f_min, f_max) = args
|
(column, f_expected, a_min, f_min, f_max) = args
|
||||||
rows = data.shape[0]
|
rows = data.shape[0]
|
||||||
|
|
||||||
# Estimate sampling frequency from timestamps
|
# Estimate sampling frequency from timestamps
|
||||||
fs = 1e6 * (rows-1) / (data[-1][0] - data[0][0])
|
fs = (rows-1) / (timestamp_to_seconds(data[-1][0]) -
|
||||||
|
timestamp_to_seconds(data[0][0]))
|
||||||
|
|
||||||
# Pull out about 3.5 periods of data at once;
|
# Pull out about 3.5 periods of data at once;
|
||||||
# we'll expect to match 3 zero crossings in each window
|
# we'll expect to match 3 zero crossings in each window
|
||||||
@@ -74,36 +108,41 @@ def process(data, interval, args, insert_function, final):
|
|||||||
if rows < N:
|
if rows < N:
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
warn = SuppressibleWarning(3, 1000)
|
||||||
|
|
||||||
# Process overlapping windows
|
# Process overlapping windows
|
||||||
start = 0
|
start = 0
|
||||||
num_zc = 0
|
num_zc = 0
|
||||||
|
last_inserted_timestamp = None
|
||||||
while start < (rows - N):
|
while start < (rows - N):
|
||||||
this = data[start:start+N, column]
|
this = data[start:start+N, column]
|
||||||
t_min = data[start, 0]/1e6
|
t_min = timestamp_to_seconds(data[start, 0])
|
||||||
t_max = data[start+N-1, 0]/1e6
|
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
||||||
|
|
||||||
# Do 4-parameter sine wave fit
|
# Do 4-parameter sine wave fit
|
||||||
(A, f0, phi, C) = sfit4(this, fs)
|
(A, f0, phi, C) = sfit4(this, fs)
|
||||||
|
|
||||||
# Check bounds. If frequency is too crazy, ignore this window
|
# Check bounds. If frequency is too crazy, ignore this window
|
||||||
if f0 < f_min or f0 > f_max:
|
if f0 < f_min or f0 > f_max:
|
||||||
print "frequency", f0, "outside valid range", f_min, "-", f_max
|
warn.warn(sprintf("frequency %s outside valid range %s - %s\n",
|
||||||
|
str(f0), str(f_min), str(f_max)), t_min)
|
||||||
start += N
|
start += N
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# If amplitude is too low, results are probably just noise
|
# If amplitude is too low, results are probably just noise
|
||||||
if A < a_min:
|
if A < a_min:
|
||||||
print "amplitude", A, "below minimum threshold", a_min
|
warn.warn(sprintf("amplitude %s below minimum threshold %s\n",
|
||||||
|
str(A), str(a_min)), t_min)
|
||||||
start += N
|
start += N
|
||||||
continue
|
continue
|
||||||
|
|
||||||
#p.plot(arange(N), this)
|
#p.plot(arange(N), this)
|
||||||
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||||
|
|
||||||
# Period starts when the argument of cosine is 3*pi/2 degrees,
|
# Period starts when the argument of sine is 0 degrees,
|
||||||
# so we're looking for sample number:
|
# so we're looking for sample number:
|
||||||
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
|
# n = (0 - phi) / (f0/fs * 2 * pi)
|
||||||
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
|
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
|
||||||
period_n = fs/f0
|
period_n = fs/f0
|
||||||
|
|
||||||
# Add periods to make N positive
|
# Add periods to make N positive
|
||||||
@@ -116,7 +155,13 @@ def process(data, interval, args, insert_function, final):
|
|||||||
while zc_n < (N - period_n/2):
|
while zc_n < (N - period_n/2):
|
||||||
#p.plot(zc_n, C, 'ro')
|
#p.plot(zc_n, C, 'ro')
|
||||||
t = t_min + zc_n / fs
|
t = t_min + zc_n / fs
|
||||||
insert_function([[t * 1e6, f0, A, C]])
|
if (last_inserted_timestamp is None or
|
||||||
|
t > last_inserted_timestamp):
|
||||||
|
insert_function([[seconds_to_timestamp(t), f0, A, C]])
|
||||||
|
last_inserted_timestamp = t
|
||||||
|
warn.reset(t)
|
||||||
|
else:
|
||||||
|
warn.warn("timestamp overlap\n", t)
|
||||||
num_zc += 1
|
num_zc += 1
|
||||||
last_zc = zc_n
|
last_zc = zc_n
|
||||||
zc_n += period_n
|
zc_n += period_n
|
||||||
@@ -134,7 +179,13 @@ def process(data, interval, args, insert_function, final):
|
|||||||
start = int(round(start + advance))
|
start = int(round(start + advance))
|
||||||
|
|
||||||
# Return the number of rows we've processed
|
# Return the number of rows we've processed
|
||||||
print "Marked", num_zc, "zero-crossings in", start, "rows"
|
warn.reset(last_inserted_timestamp)
|
||||||
|
if last_inserted_timestamp:
|
||||||
|
now = timestamp_to_human(seconds_to_timestamp(
|
||||||
|
last_inserted_timestamp)) + ": "
|
||||||
|
else:
|
||||||
|
now = ""
|
||||||
|
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
|
||||||
return start
|
return start
|
||||||
|
|
||||||
def sfit4(data, fs):
|
def sfit4(data, fs):
|
||||||
@@ -149,9 +200,9 @@ def sfit4(data, fs):
|
|||||||
|
|
||||||
Output:
|
Output:
|
||||||
Parameters [A, f0, phi, C] to fit the equation
|
Parameters [A, f0, phi, C] to fit the equation
|
||||||
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
|
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||||
where n is sample number. Or, as a function of time:
|
where n is sample number. Or, as a function of time:
|
||||||
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
|
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||||
|
|
||||||
by Jim Paris
|
by Jim Paris
|
||||||
(Verified to match sfit4.m)
|
(Verified to match sfit4.m)
|
||||||
@@ -188,12 +239,11 @@ def sfit4(data, fs):
|
|||||||
# if something fails with the least squares fit, etc.
|
# if something fails with the least squares fit, etc.
|
||||||
try:
|
try:
|
||||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||||
|
s = zeros(3)
|
||||||
w = 2*pi*f0
|
w = 2*pi*f0
|
||||||
D = c_[cos(w*t), sin(w*t), ones(N)]
|
|
||||||
s = linalg.lstsq(D, data)[0]
|
|
||||||
|
|
||||||
# Now iterate 6 times (step i)
|
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||||
for idx in range(6):
|
for idx in range(7):
|
||||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||||
@@ -202,7 +252,7 @@ def sfit4(data, fs):
|
|||||||
## Extract results
|
## Extract results
|
||||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||||
f0 = w / (2*pi)
|
f0 = w / (2*pi)
|
||||||
phi = -arctan2(s[1], s[0]) # eqn B.22
|
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||||
C = s[2]
|
C = s[2]
|
||||||
return (A, f0, phi, C)
|
return (A, f0, phi, C)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
Reference in New Issue
Block a user