You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

armv7m.c 24 KiB

Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
15 years ago
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
15 years ago
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
15 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2006 by Magnus Lundin *
  6. * lundin@mlu.mine.nu *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2007,2008 Øyvind Harboe *
  12. * oyvind.harboe@zylin.com *
  13. * *
  14. * This program is free software; you can redistribute it and/or modify *
  15. * it under the terms of the GNU General Public License as published by *
  16. * the Free Software Foundation; either version 2 of the License, or *
  17. * (at your option) any later version. *
  18. * *
  19. * This program is distributed in the hope that it will be useful, *
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  22. * GNU General Public License for more details. *
  23. * *
  24. * You should have received a copy of the GNU General Public License *
  25. * along with this program; if not, write to the *
  26. * Free Software Foundation, Inc., *
  27. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  28. * *
  29. * ARMv7-M Architecture, Application Level Reference Manual *
  30. * ARM DDI 0405C (September 2008) *
  31. * *
  32. ***************************************************************************/
  33. #ifdef HAVE_CONFIG_H
  34. #include "config.h"
  35. #endif
  36. #include "breakpoints.h"
  37. #include "armv7m.h"
  38. #include "algorithm.h"
  39. #include "register.h"
  40. #if 0
  41. #define _DEBUG_INSTRUCTION_EXECUTION_
  42. #endif
  43. static char *armv7m_exception_strings[] = {
  44. "", "Reset", "NMI", "HardFault",
  45. "MemManage", "BusFault", "UsageFault", "RESERVED",
  46. "RESERVED", "RESERVED", "RESERVED", "SVCall",
  47. "DebugMonitor", "RESERVED", "PendSV", "SysTick"
  48. };
  49. /* PSP is used in some thread modes */
  50. const int armv7m_psp_reg_map[17] = {
  51. ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
  52. ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
  53. ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
  54. ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
  55. ARMV7M_xPSR,
  56. };
  57. /* MSP is used in handler and some thread modes */
  58. const int armv7m_msp_reg_map[17] = {
  59. ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
  60. ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
  61. ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
  62. ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
  63. ARMV7M_xPSR,
  64. };
  65. #ifdef ARMV7_GDB_HACKS
  66. uint8_t armv7m_gdb_dummy_cpsr_value[] = {0, 0, 0, 0};
  67. struct reg armv7m_gdb_dummy_cpsr_reg = {
  68. .name = "GDB dummy cpsr register",
  69. .value = armv7m_gdb_dummy_cpsr_value,
  70. .dirty = 0,
  71. .valid = 1,
  72. .size = 32,
  73. .arch_info = NULL,
  74. };
  75. #endif
  76. /*
  77. * These registers are not memory-mapped. The ARMv7-M profile includes
  78. * memory mapped registers too, such as for the NVIC (interrupt controller)
  79. * and SysTick (timer) modules; those can mostly be treated as peripherals.
  80. *
  81. * The ARMv6-M profile is almost identical in this respect, except that it
  82. * doesn't include basepri or faultmask registers.
  83. */
  84. static const struct {
  85. unsigned id;
  86. const char *name;
  87. unsigned bits;
  88. } armv7m_regs[] = {
  89. { ARMV7M_R0, "r0", 32 },
  90. { ARMV7M_R1, "r1", 32 },
  91. { ARMV7M_R2, "r2", 32 },
  92. { ARMV7M_R3, "r3", 32 },
  93. { ARMV7M_R4, "r4", 32 },
  94. { ARMV7M_R5, "r5", 32 },
  95. { ARMV7M_R6, "r6", 32 },
  96. { ARMV7M_R7, "r7", 32 },
  97. { ARMV7M_R8, "r8", 32 },
  98. { ARMV7M_R9, "r9", 32 },
  99. { ARMV7M_R10, "r10", 32 },
  100. { ARMV7M_R11, "r11", 32 },
  101. { ARMV7M_R12, "r12", 32 },
  102. { ARMV7M_R13, "sp", 32 },
  103. { ARMV7M_R14, "lr", 32 },
  104. { ARMV7M_PC, "pc", 32 },
  105. { ARMV7M_xPSR, "xPSR", 32 },
  106. { ARMV7M_MSP, "msp", 32 },
  107. { ARMV7M_PSP, "psp", 32 },
  108. { ARMV7M_PRIMASK, "primask", 1 },
  109. { ARMV7M_BASEPRI, "basepri", 8 },
  110. { ARMV7M_FAULTMASK, "faultmask", 1 },
  111. { ARMV7M_CONTROL, "control", 2 },
  112. };
  113. #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
  114. /**
  115. * Restores target context using the cache of core registers set up
  116. * by armv7m_build_reg_cache(), calling optional core-specific hooks.
  117. */
  118. int armv7m_restore_context(struct target *target)
  119. {
  120. int i;
  121. struct armv7m_common *armv7m = target_to_armv7m(target);
  122. struct reg_cache *cache = armv7m->arm.core_cache;
  123. LOG_DEBUG(" ");
  124. if (armv7m->pre_restore_context)
  125. armv7m->pre_restore_context(target);
  126. for (i = ARMV7M_NUM_REGS - 1; i >= 0; i--) {
  127. if (cache->reg_list[i].dirty) {
  128. uint32_t value = buf_get_u32(cache->reg_list[i].value, 0, 32);
  129. armv7m->arm.write_core_reg(target, &cache->reg_list[i], i, ARM_MODE_ANY, value);
  130. }
  131. }
  132. return ERROR_OK;
  133. }
  134. /* Core state functions */
  135. /**
  136. * Maps ISR number (from xPSR) to name.
  137. * Note that while names and meanings for the first sixteen are standardized
  138. * (with zero not a true exception), external interrupts are only numbered.
  139. * They are assigned by vendors, which generally assign different numbers to
  140. * peripherals (such as UART0 or a USB peripheral controller).
  141. */
  142. char *armv7m_exception_string(int number)
  143. {
  144. static char enamebuf[32];
  145. if ((number < 0) | (number > 511))
  146. return "Invalid exception";
  147. if (number < 16)
  148. return armv7m_exception_strings[number];
  149. sprintf(enamebuf, "External Interrupt(%i)", number - 16);
  150. return enamebuf;
  151. }
  152. static int armv7m_get_core_reg(struct reg *reg)
  153. {
  154. int retval;
  155. struct arm_reg *armv7m_reg = reg->arch_info;
  156. struct target *target = armv7m_reg->target;
  157. struct arm *arm = target_to_arm(target);
  158. if (target->state != TARGET_HALTED)
  159. return ERROR_TARGET_NOT_HALTED;
  160. retval = arm->read_core_reg(target, reg, armv7m_reg->num, arm->core_mode);
  161. return retval;
  162. }
  163. static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
  164. {
  165. struct arm_reg *armv7m_reg = reg->arch_info;
  166. struct target *target = armv7m_reg->target;
  167. uint32_t value = buf_get_u32(buf, 0, 32);
  168. if (target->state != TARGET_HALTED)
  169. return ERROR_TARGET_NOT_HALTED;
  170. buf_set_u32(reg->value, 0, 32, value);
  171. reg->dirty = 1;
  172. reg->valid = 1;
  173. return ERROR_OK;
  174. }
  175. static int armv7m_read_core_reg(struct target *target, struct reg *r,
  176. int num, enum arm_mode mode)
  177. {
  178. uint32_t reg_value;
  179. int retval;
  180. struct arm_reg *armv7m_core_reg;
  181. struct armv7m_common *armv7m = target_to_armv7m(target);
  182. assert(num < (int)armv7m->arm.core_cache->num_regs);
  183. armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
  184. retval = armv7m->load_core_reg_u32(target,
  185. armv7m_core_reg->num, &reg_value);
  186. buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value);
  187. armv7m->arm.core_cache->reg_list[num].valid = 1;
  188. armv7m->arm.core_cache->reg_list[num].dirty = 0;
  189. return retval;
  190. }
  191. static int armv7m_write_core_reg(struct target *target, struct reg *r,
  192. int num, enum arm_mode mode, uint32_t value)
  193. {
  194. int retval;
  195. uint32_t reg_value;
  196. struct arm_reg *armv7m_core_reg;
  197. struct armv7m_common *armv7m = target_to_armv7m(target);
  198. assert(num < (int)armv7m->arm.core_cache->num_regs);
  199. reg_value = buf_get_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32);
  200. armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
  201. retval = armv7m->store_core_reg_u32(target,
  202. armv7m_core_reg->num,
  203. reg_value);
  204. if (retval != ERROR_OK) {
  205. LOG_ERROR("JTAG failure");
  206. armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid;
  207. return ERROR_JTAG_DEVICE_ERROR;
  208. }
  209. LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, reg_value);
  210. armv7m->arm.core_cache->reg_list[num].valid = 1;
  211. armv7m->arm.core_cache->reg_list[num].dirty = 0;
  212. return ERROR_OK;
  213. }
  214. /**
  215. * Returns generic ARM userspace registers to GDB.
  216. * GDB doesn't quite understand that most ARMs don't have floating point
  217. * hardware, so this also fakes a set of long-obsolete FPA registers that
  218. * are not used in EABI based software stacks.
  219. */
  220. int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
  221. {
  222. struct armv7m_common *armv7m = target_to_armv7m(target);
  223. int i;
  224. *reg_list_size = 26;
  225. *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
  226. /*
  227. * GDB register packet format for ARM:
  228. * - the first 16 registers are r0..r15
  229. * - (obsolete) 8 FPA registers
  230. * - (obsolete) FPA status
  231. * - CPSR
  232. */
  233. for (i = 0; i < 16; i++)
  234. (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
  235. for (i = 16; i < 24; i++)
  236. (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
  237. (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
  238. #ifdef ARMV7_GDB_HACKS
  239. /* use dummy cpsr reg otherwise gdb may try and set the thumb bit */
  240. (*reg_list)[25] = &armv7m_gdb_dummy_cpsr_reg;
  241. /* ARMV7M is always in thumb mode, try to make GDB understand this
  242. * if it does not support this arch */
  243. *((char *)armv7m->arm.pc->value) |= 1;
  244. #else
  245. (*reg_list)[25] = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
  246. #endif
  247. return ERROR_OK;
  248. }
  249. /** Runs a Thumb algorithm in the target. */
  250. int armv7m_run_algorithm(struct target *target,
  251. int num_mem_params, struct mem_param *mem_params,
  252. int num_reg_params, struct reg_param *reg_params,
  253. uint32_t entry_point, uint32_t exit_point,
  254. int timeout_ms, void *arch_info)
  255. {
  256. int retval;
  257. retval = armv7m_start_algorithm(target,
  258. num_mem_params, mem_params,
  259. num_reg_params, reg_params,
  260. entry_point, exit_point,
  261. arch_info);
  262. if (retval == ERROR_OK)
  263. retval = armv7m_wait_algorithm(target,
  264. num_mem_params, mem_params,
  265. num_reg_params, reg_params,
  266. exit_point, timeout_ms,
  267. arch_info);
  268. return retval;
  269. }
  270. /** Starts a Thumb algorithm in the target. */
  271. int armv7m_start_algorithm(struct target *target,
  272. int num_mem_params, struct mem_param *mem_params,
  273. int num_reg_params, struct reg_param *reg_params,
  274. uint32_t entry_point, uint32_t exit_point,
  275. void *arch_info)
  276. {
  277. struct armv7m_common *armv7m = target_to_armv7m(target);
  278. struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
  279. enum arm_mode core_mode = armv7m->arm.core_mode;
  280. int retval = ERROR_OK;
  281. /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
  282. * at the exit point */
  283. if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
  284. LOG_ERROR("current target isn't an ARMV7M target");
  285. return ERROR_TARGET_INVALID;
  286. }
  287. if (target->state != TARGET_HALTED) {
  288. LOG_WARNING("target not halted");
  289. return ERROR_TARGET_NOT_HALTED;
  290. }
  291. /* refresh core register cache
  292. * Not needed if core register cache is always consistent with target process state */
  293. for (unsigned i = 0; i < ARMV7M_NUM_REGS; i++) {
  294. armv7m_algorithm_info->context[i] = buf_get_u32(
  295. armv7m->arm.core_cache->reg_list[i].value,
  296. 0,
  297. 32);
  298. }
  299. for (int i = 0; i < num_mem_params; i++) {
  300. /* TODO: Write only out params */
  301. retval = target_write_buffer(target, mem_params[i].address,
  302. mem_params[i].size,
  303. mem_params[i].value);
  304. if (retval != ERROR_OK)
  305. return retval;
  306. }
  307. for (int i = 0; i < num_reg_params; i++) {
  308. struct reg *reg =
  309. register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
  310. /* uint32_t regvalue; */
  311. if (!reg) {
  312. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  313. return ERROR_COMMAND_SYNTAX_ERROR;
  314. }
  315. if (reg->size != reg_params[i].size) {
  316. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
  317. reg_params[i].reg_name);
  318. return ERROR_COMMAND_SYNTAX_ERROR;
  319. }
  320. /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
  321. armv7m_set_core_reg(reg, reg_params[i].value);
  322. }
  323. if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
  324. armv7m_algorithm_info->core_mode != core_mode) {
  325. /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
  326. if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
  327. armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
  328. LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
  329. }
  330. LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
  331. buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
  332. 0, 1, armv7m_algorithm_info->core_mode);
  333. armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
  334. armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
  335. }
  336. /* save previous core mode */
  337. armv7m_algorithm_info->core_mode = core_mode;
  338. retval = target_resume(target, 0, entry_point, 1, 1);
  339. return retval;
  340. }
  341. /** Waits for an algorithm in the target. */
  342. int armv7m_wait_algorithm(struct target *target,
  343. int num_mem_params, struct mem_param *mem_params,
  344. int num_reg_params, struct reg_param *reg_params,
  345. uint32_t exit_point, int timeout_ms,
  346. void *arch_info)
  347. {
  348. struct armv7m_common *armv7m = target_to_armv7m(target);
  349. struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
  350. int retval = ERROR_OK;
  351. uint32_t pc;
  352. /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
  353. * at the exit point */
  354. if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
  355. LOG_ERROR("current target isn't an ARMV7M target");
  356. return ERROR_TARGET_INVALID;
  357. }
  358. retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
  359. /* If the target fails to halt due to the breakpoint, force a halt */
  360. if (retval != ERROR_OK || target->state != TARGET_HALTED) {
  361. retval = target_halt(target);
  362. if (retval != ERROR_OK)
  363. return retval;
  364. retval = target_wait_state(target, TARGET_HALTED, 500);
  365. if (retval != ERROR_OK)
  366. return retval;
  367. return ERROR_TARGET_TIMEOUT;
  368. }
  369. armv7m->load_core_reg_u32(target, 15, &pc);
  370. if (exit_point && (pc != exit_point)) {
  371. LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" PRIx32,
  372. pc,
  373. exit_point);
  374. return ERROR_TARGET_TIMEOUT;
  375. }
  376. /* Read memory values to mem_params[] */
  377. for (int i = 0; i < num_mem_params; i++) {
  378. if (mem_params[i].direction != PARAM_OUT) {
  379. retval = target_read_buffer(target, mem_params[i].address,
  380. mem_params[i].size,
  381. mem_params[i].value);
  382. if (retval != ERROR_OK)
  383. return retval;
  384. }
  385. }
  386. /* Copy core register values to reg_params[] */
  387. for (int i = 0; i < num_reg_params; i++) {
  388. if (reg_params[i].direction != PARAM_OUT) {
  389. struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
  390. reg_params[i].reg_name,
  391. 0);
  392. if (!reg) {
  393. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  394. return ERROR_COMMAND_SYNTAX_ERROR;
  395. }
  396. if (reg->size != reg_params[i].size) {
  397. LOG_ERROR(
  398. "BUG: register '%s' size doesn't match reg_params[i].size",
  399. reg_params[i].reg_name);
  400. return ERROR_COMMAND_SYNTAX_ERROR;
  401. }
  402. buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
  403. }
  404. }
  405. for (int i = ARMV7M_NUM_REGS - 1; i >= 0; i--) {
  406. uint32_t regvalue;
  407. regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
  408. if (regvalue != armv7m_algorithm_info->context[i]) {
  409. LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
  410. armv7m->arm.core_cache->reg_list[i].name,
  411. armv7m_algorithm_info->context[i]);
  412. buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
  413. 0, 32, armv7m_algorithm_info->context[i]);
  414. armv7m->arm.core_cache->reg_list[i].valid = 1;
  415. armv7m->arm.core_cache->reg_list[i].dirty = 1;
  416. }
  417. }
  418. /* restore previous core mode */
  419. if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
  420. LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
  421. buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
  422. 0, 1, armv7m_algorithm_info->core_mode);
  423. armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
  424. armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
  425. }
  426. armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
  427. return retval;
  428. }
  429. /** Logs summary of ARMv7-M state for a halted target. */
  430. int armv7m_arch_state(struct target *target)
  431. {
  432. struct armv7m_common *armv7m = target_to_armv7m(target);
  433. struct arm *arm = &armv7m->arm;
  434. uint32_t ctrl, sp;
  435. ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
  436. sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
  437. LOG_USER("target halted due to %s, current mode: %s %s\n"
  438. "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s",
  439. debug_reason_name(target),
  440. arm_mode_name(arm->core_mode),
  441. armv7m_exception_string(armv7m->exception_number),
  442. buf_get_u32(arm->cpsr->value, 0, 32),
  443. buf_get_u32(arm->pc->value, 0, 32),
  444. (ctrl & 0x02) ? 'p' : 'm',
  445. sp,
  446. arm->is_semihosting ? ", semihosting" : "");
  447. return ERROR_OK;
  448. }
  449. static const struct reg_arch_type armv7m_reg_type = {
  450. .get = armv7m_get_core_reg,
  451. .set = armv7m_set_core_reg,
  452. };
  453. /** Builds cache of architecturally defined registers. */
  454. struct reg_cache *armv7m_build_reg_cache(struct target *target)
  455. {
  456. struct armv7m_common *armv7m = target_to_armv7m(target);
  457. struct arm *arm = &armv7m->arm;
  458. int num_regs = ARMV7M_NUM_REGS;
  459. struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
  460. struct reg_cache *cache = malloc(sizeof(struct reg_cache));
  461. struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
  462. struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
  463. int i;
  464. #ifdef ARMV7_GDB_HACKS
  465. register_init_dummy(&armv7m_gdb_dummy_cpsr_reg);
  466. #endif
  467. /* Build the process context cache */
  468. cache->name = "arm v7m registers";
  469. cache->next = NULL;
  470. cache->reg_list = reg_list;
  471. cache->num_regs = num_regs;
  472. (*cache_p) = cache;
  473. for (i = 0; i < num_regs; i++) {
  474. arch_info[i].num = armv7m_regs[i].id;
  475. arch_info[i].target = target;
  476. arch_info[i].arm = arm;
  477. reg_list[i].name = armv7m_regs[i].name;
  478. reg_list[i].size = armv7m_regs[i].bits;
  479. reg_list[i].value = calloc(1, 4);
  480. reg_list[i].dirty = 0;
  481. reg_list[i].valid = 0;
  482. reg_list[i].type = &armv7m_reg_type;
  483. reg_list[i].arch_info = &arch_info[i];
  484. }
  485. arm->cpsr = reg_list + ARMV7M_xPSR;
  486. arm->pc = reg_list + ARMV7M_PC;
  487. arm->core_cache = cache;
  488. return cache;
  489. }
  490. static int armv7m_setup_semihosting(struct target *target, int enable)
  491. {
  492. /* nothing todo for armv7m */
  493. return ERROR_OK;
  494. }
  495. /** Sets up target as a generic ARMv7-M core */
  496. int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
  497. {
  498. struct arm *arm = &armv7m->arm;
  499. armv7m->common_magic = ARMV7M_COMMON_MAGIC;
  500. armv7m->fp_feature = FP_NONE;
  501. arm->core_type = ARM_MODE_THREAD;
  502. arm->arch_info = armv7m;
  503. arm->setup_semihosting = armv7m_setup_semihosting;
  504. arm->read_core_reg = armv7m_read_core_reg;
  505. arm->write_core_reg = armv7m_write_core_reg;
  506. return arm_init_arch_info(target, arm);
  507. }
  508. /** Generates a CRC32 checksum of a memory region. */
  509. int armv7m_checksum_memory(struct target *target,
  510. uint32_t address, uint32_t count, uint32_t *checksum)
  511. {
  512. struct working_area *crc_algorithm;
  513. struct armv7m_algorithm armv7m_info;
  514. struct reg_param reg_params[2];
  515. int retval;
  516. /* see contrib/loaders/checksum/armv7m_crc.s for src */
  517. static const uint8_t cortex_m3_crc_code[] = {
  518. /* main: */
  519. 0x02, 0x46, /* mov r2, r0 */
  520. 0x00, 0x20, /* movs r0, #0 */
  521. 0xC0, 0x43, /* mvns r0, r0 */
  522. 0x0A, 0x4E, /* ldr r6, CRC32XOR */
  523. 0x0B, 0x46, /* mov r3, r1 */
  524. 0x00, 0x24, /* movs r4, #0 */
  525. 0x0D, 0xE0, /* b ncomp */
  526. /* nbyte: */
  527. 0x11, 0x5D, /* ldrb r1, [r2, r4] */
  528. 0x09, 0x06, /* lsls r1, r1, #24 */
  529. 0x48, 0x40, /* eors r0, r0, r1 */
  530. 0x00, 0x25, /* movs r5, #0 */
  531. /* loop: */
  532. 0x00, 0x28, /* cmp r0, #0 */
  533. 0x02, 0xDA, /* bge notset */
  534. 0x40, 0x00, /* lsls r0, r0, #1 */
  535. 0x70, 0x40, /* eors r0, r0, r6 */
  536. 0x00, 0xE0, /* b cont */
  537. /* notset: */
  538. 0x40, 0x00, /* lsls r0, r0, #1 */
  539. /* cont: */
  540. 0x01, 0x35, /* adds r5, r5, #1 */
  541. 0x08, 0x2D, /* cmp r5, #8 */
  542. 0xF6, 0xD1, /* bne loop */
  543. 0x01, 0x34, /* adds r4, r4, #1 */
  544. /* ncomp: */
  545. 0x9C, 0x42, /* cmp r4, r3 */
  546. 0xEF, 0xD1, /* bne nbyte */
  547. 0x00, 0xBE, /* bkpt #0 */
  548. 0xB7, 0x1D, 0xC1, 0x04 /* CRC32XOR: .word 0x04c11db7 */
  549. };
  550. retval = target_alloc_working_area(target, sizeof(cortex_m3_crc_code), &crc_algorithm);
  551. if (retval != ERROR_OK)
  552. return retval;
  553. retval = target_write_buffer(target, crc_algorithm->address,
  554. sizeof(cortex_m3_crc_code), (uint8_t *)cortex_m3_crc_code);
  555. if (retval != ERROR_OK)
  556. goto cleanup;
  557. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  558. armv7m_info.core_mode = ARM_MODE_THREAD;
  559. init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
  560. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  561. buf_set_u32(reg_params[0].value, 0, 32, address);
  562. buf_set_u32(reg_params[1].value, 0, 32, count);
  563. int timeout = 20000 * (1 + (count / (1024 * 1024)));
  564. retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
  565. crc_algorithm->address + (sizeof(cortex_m3_crc_code) - 6),
  566. timeout, &armv7m_info);
  567. if (retval == ERROR_OK)
  568. *checksum = buf_get_u32(reg_params[0].value, 0, 32);
  569. else
  570. LOG_ERROR("error executing cortex_m3 crc algorithm");
  571. destroy_reg_param(&reg_params[0]);
  572. destroy_reg_param(&reg_params[1]);
  573. cleanup:
  574. target_free_working_area(target, crc_algorithm);
  575. return retval;
  576. }
  577. /** Checks whether a memory region is zeroed. */
  578. int armv7m_blank_check_memory(struct target *target,
  579. uint32_t address, uint32_t count, uint32_t *blank)
  580. {
  581. struct working_area *erase_check_algorithm;
  582. struct reg_param reg_params[3];
  583. struct armv7m_algorithm armv7m_info;
  584. int retval;
  585. /* see contrib/loaders/erase_check/armv7m_erase_check.s for src */
  586. static const uint8_t erase_check_code[] = {
  587. /* loop: */
  588. 0x03, 0x78, /* ldrb r3, [r0] */
  589. 0x01, 0x30, /* adds r0, #1 */
  590. 0x1A, 0x40, /* ands r2, r2, r3 */
  591. 0x01, 0x39, /* subs r1, r1, #1 */
  592. 0xFA, 0xD1, /* bne loop */
  593. 0x00, 0xBE /* bkpt #0 */
  594. };
  595. /* make sure we have a working area */
  596. if (target_alloc_working_area(target, sizeof(erase_check_code),
  597. &erase_check_algorithm) != ERROR_OK)
  598. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  599. retval = target_write_buffer(target, erase_check_algorithm->address,
  600. sizeof(erase_check_code), (uint8_t *)erase_check_code);
  601. if (retval != ERROR_OK)
  602. return retval;
  603. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  604. armv7m_info.core_mode = ARM_MODE_THREAD;
  605. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  606. buf_set_u32(reg_params[0].value, 0, 32, address);
  607. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  608. buf_set_u32(reg_params[1].value, 0, 32, count);
  609. init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
  610. buf_set_u32(reg_params[2].value, 0, 32, 0xff);
  611. retval = target_run_algorithm(target,
  612. 0,
  613. NULL,
  614. 3,
  615. reg_params,
  616. erase_check_algorithm->address,
  617. erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
  618. 10000,
  619. &armv7m_info);
  620. if (retval == ERROR_OK)
  621. *blank = buf_get_u32(reg_params[2].value, 0, 32);
  622. destroy_reg_param(&reg_params[0]);
  623. destroy_reg_param(&reg_params[1]);
  624. destroy_reg_param(&reg_params[2]);
  625. target_free_working_area(target, erase_check_algorithm);
  626. return retval;
  627. }
  628. int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
  629. {
  630. struct armv7m_common *armv7m = target_to_armv7m(target);
  631. struct reg *r = armv7m->arm.pc;
  632. bool result = false;
  633. /* if we halted last time due to a bkpt instruction
  634. * then we have to manually step over it, otherwise
  635. * the core will break again */
  636. if (target->debug_reason == DBG_REASON_BREAKPOINT) {
  637. uint16_t op;
  638. uint32_t pc = buf_get_u32(r->value, 0, 32);
  639. pc &= ~1;
  640. if (target_read_u16(target, pc, &op) == ERROR_OK) {
  641. if ((op & 0xFF00) == 0xBE00) {
  642. pc = buf_get_u32(r->value, 0, 32) + 2;
  643. buf_set_u32(r->value, 0, 32, pc);
  644. r->dirty = true;
  645. r->valid = true;
  646. result = true;
  647. LOG_DEBUG("Skipping over BKPT instruction");
  648. }
  649. }
  650. }
  651. if (inst_found)
  652. *inst_found = result;
  653. return ERROR_OK;
  654. }
  655. const struct command_registration armv7m_command_handlers[] = {
  656. {
  657. .chain = arm_command_handlers,
  658. },
  659. {
  660. .chain = dap_command_handlers,
  661. },
  662. COMMAND_REGISTRATION_DONE
  663. };